
Forecasting Bond Risk Premia using Stationary Yield Factors∗

Tobias Hoogteijling† Martin Martens Michel van der Wel
Erasmus University Rotterdam and Robeco Quantitative Investing‡

January 14, 2022

Abstract

The standard way to summarize the yield curve is to use the first three principal components
of the yield curve, resulting in level, slope and curvature factors. Yields, however, are
non-stationary. We analyze the first three principal components of yield changes, which
correspond to changes in level, slope and curvature. The new factors based on changes in
yields have strong predictive power for bond risk premia, in contrast to the factors based
on yield levels. We also provide insights into the impact this has on the added value of
macro data for bond risk premia predictions and the recent conclusion that machine learning
provides better forecasts than linear regression.

JEL classification: G12, G17, C38, E43, C45.
Keywords: Yield curve, Bond risk premia, Forecasting, PCA, Machine learning.

∗We thank Casper Zomerdijk for many fruitful discussions and elaborate feedback. We are grateful to Michael
Bauer, Laurens Swinkels and Adam Zaremba for valuable comments on our work.
†Corresponding author. E-mail: t.hoogteijling@robeco.nl.
‡Tobias Hoogteijling and Martin Martens are at Robeco Quantitative Investing. Michel van der Wel is at

Erasmus University Rotterdam. The views expressed in this paper are those of the authors and do not necessarily
reflect the position of Robeco.



1 Introduction

The dominant approach to model the term structure of interest rates is to use principal com-

ponents analysis (PCA) applied to yields leading to the well-known level, slope and curvature

factors [see Piazzesi (2010), Gürkaynak and Wright (2012), and Duffee (2013) for surveys]. How-

ever, yields are highly persistent. Uhlig (2009) shows that unrelated persistent (macro) series

may give rise to a spurious factor structure in finite samples. Onatski and Wang (2021) formal-

ize this finding, by documenting that applying PCA to non-stationary series produces spurious

common variation. Crump and Gospodinov (2019) argue that therefore yields are not good

primitive processes for modeling and extracting the relevant factor space. They recommend to

use returns [like Litterman and Scheinkman (1991), Garbade (1996), and, more recently, Adrian,

Crump and Moench (2013) and Golinski and Spencer (2017)] or changes in forward rates rather

than yield levels.

In this paper, we study the importance of using (stationary) yield changes rather than

(non-stationary) yields for excess bond return prediction, by analyzing one-year changes in US

treasury yields for 1971 through 2018.1 We show that the first three principal components of

yield changes explain 99.75 percent of the variation in changes in yields. The loadings on these

principal components indicate that the factors can be interpreted as changes in level, slope and

curvature. We then investigate how well these three factors can predict one-year excess bond

returns for maturities ranging from two years to ten years. Using real-time regressions with

the historical mean as the benchmark we find that the out-of-sample R-squareds of the three

principal components of yield changes range from 14.4 percent for the excess returns of the

ten-year zero-coupon bonds to 20.4 percent for the four-year bonds. This is in sharp contrast

with the principal components of yield levels or forward rates as well as the Cochrane and

Piazzesi (2005) linear combination of forward rates. These all give high negative out-of-sample

R-squareds for all maturities, implying that they increase the Mean Squared Prediction Error

compared to an prediction equal to the historical mean.2,3 Applying PCA to changes in forwards

1The convention of using one-year periods is common in the literature and dates back to early work such as
Fama and Bliss (1987).

2Andreasen et al. (2021) find that the regression coefficients of the yield spread, forward spread and the
Cochrane and Piazzesi (2005) factor actually change over time - even switch sign - conditional on recession and
expansion indicators. This at least provides a partial explanation for why it is difficult to predict bond returns
out-of-sample with principal components of yields (with the slope as second factor) or a linear combination of
forward rates.

3Another explanation provided in Thornton and Valente (2012) in the context of the Cochrane and Piazzesi
(2005) factor is that bond yields are highly serially correlated and correlated across maturities. If both regressors
and regressands exhibit a high serial correlation, the predictive regressions based on forward rates may suffer
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gives similar results as those for changes in yields. Hence, unlike the most commonly used yield

and forward factors, the new factors based on changes in yields or changes in forwards do have

significant out-of-sample predictive power for excess bond returns. The conclusion that the new

factors have predictive power whilst existing factors do not also holds when looking at economic

value in the spirit of Thornton and Valente (2012).

Of the new factors, especially the change in the slope factor has strong predictive power. A

positive change in the slope on average leads to positive excess bond returns, and vice versa. In

recessions for example, we tend to see that the Fed lowers the target rate and the entire curve

tends to steepen amidst strong positive bond returns.

The strong predictive power of principal components from yield changes raises the bar on

non-yield curve information to have added value above and beyond these new-found yield factors.

A common requirement for a new predictive variable is that it adds predictive value above and

beyond level, slope and curvature. But these factors themselves have no out-of-sample predictive

value nor economic value, whereas the new factors based on yield changes or changes in forward

rates do. To examine whether existing non-yield variables also meet this higher bar, we re-

examine Ludvigson and Ng (2009) who add principal components of a large data set of macro

data as factors.4 For final (revised) macro data we find that they only improve forecasts for the

ten-year excess bond returns, and for vintage macro data we see significant improvements for

seven- and ten-year excess bond returns. Interestingly, we see that in our case regressions more

often select the second and third principal component of the macro data, which load more on

interest rate and price variables. Several of these components are known in real time, explaining

why in our case the impact of final versus vintage data is much smaller. This is in contrast to

the findings of Ludvigson and Ng (2009) that it is the first principal component of the macro

data that adds most value to the principal components of the yield levels, which is the ‘real’

factor capturing employment and production. The significance of this real factor disappears

when using vintage data, as reported by Ghysels, Horan, and Moench (2014). Macro data do

not add value to the shortest maturities.

Finally we look at neural networks. Bianchi, Tamoni, and Büchner (2021) and Bianchi,

from a spurious regression problem (see Ferson et al. (2003a), Ferson et al. (2003b) and the references therein).
Consequently, evidence of in-sample predictability need not be a useful indicator of out-of-sample predictive
performance.

4There is a long literature on using macro data for modeling yields and bond returns. See, e.g., Ang and Pi-
azzesi (2003), Cooper and Priestley (2009), Hamilton and Wu (2012), Bansal and Shaliastovich (2013), Greenwood
and Vayanos (2014), Joslin et al. (2014), Cieslak and Povala (2015), Bauer and Hamilton (2018), Christensen and
Van der Wel (2019) and Baltussen et al. (2021).
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Büchner, Hoogteijling, and Tamoni (2021) conclude neural networks - the top performer amongst

a whole battery of machine learning techniques - beat linear regression both in terms of out-

of-sample R-squared and economic value regardless of only using forward rates, or combining

forward rates with final macro data. When replacing (the first three principal components of)

forward rates with the first three principal components of changes in forward rates, the conclusion

is however reversed. We show that for most maturities linear regression is significantly better

than neural networks both in the case where only forward rates are used, and in the case that

both forward rates and final macro data are used; and regardless of whether the neural network

uses forward rates or changes in forward rates. Notably when only using forward rates the neural

network forecasts also improve when providing it with changes in forward rates instead of forward

rates levels. Jung and Shah (2015) and Sugiyama, Yamada, and Du Plessis (2013) already note

that machine learning techniques can also run into severe problems with non-stationary data.

In the yield setting, we confirm this, but our results highlight machine learning techniques are

nevertheless able to cope better with non-stationary input than plain linear regressions.

Summarizing, we add to the existing literature in several ways. First and most importantly,

we propose a new three-factor model based on the principal components of one-year changes in

yields. Whereas the first principal component resembles the well-known trend factor, the other

two principal components - changes in the slope and curvature - are new predictive variables.

Papers either study explicitly a non-stationary yield setting [see, e.g., Hall, Anderson, and

Granger (1992), Shea (1992) and Bowsher and Meeks (2008)], or deviations of yields around

a trend. For example, Favero, Melone, and Tamoni (2021) and Berardi, Markovich, Plazzi,

and Tamoni (2021) study deviations of non-stationary yields from the drift caused by monetary

policy rates and document predictability of these deviations for excess bond returns. Bauer

and Rudebusch (2020) show that deviations of yields from time-varying long-run trends help

predicting excess bond returns. We differ by studying factors based on a simple transformation

of yields, using simple PCA as commonly done for the untransformed series. Second, we show

that the new factors have strong real-time predictability for bond risk premia, both in terms of

out-of-sample R-squared and economic value. Our new factor model leads to three important

conclusions that are different from what has been reported before: (i) We do find economic

value when only using yield curve information to predict bond risk premia, whereas this is not

the case when principal components of yield levels or the Cochrane and Piazzesi (2005) factor

are used; (ii) vintage macro data do significantly improve forecasts for longer maturities; and
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(iii) we find that linear regression still provides better forecasts than the currently best Machine

Learning techniques.

2 Modeling Bond Risk Premia with Yield Changes

This section presents the result that factors based on changes in yields have strong predictive

power for bond risk premia. In Section 2.1 we present our data, introduce the notation and

transformations, and show factors based on both yields and yield changes. In Section 2.2 we

formally test nonstationarity of the yield data, and in Section 2.3 we present the results of

forecasting bond risk premia.

2.1 Yield data, transformations, and yield factors

For yield information, we use the yield data set of Liu and Wu (2021).5 The sample period is

from August 1971, when the first ten-year US government bond was issued, through December

2018. The out-of-sample period starts in January 1990. We adopt the same time windows

throughout this paper. We consider maturities of one through ten years. The left panel of

Figure 1 provides a plot of the data, for five of the maturities. After an increase in the first 15

years of the sample, yields peaked in the early 1980’s, in a period often referred to as the Volcker

regime, and have drifted down strongly ever since. After the financial crisis in 2008, particularly

short rates have been close to 0%, and they have increased somewhat during the final years of

the 2010’s. There is a strong co-movement in the series. Over time, there is variation in the

spread between the short and long yields. Particularly during the mid-1990’s, mid 2000’s and

after the financial crisis, long yields have been considerably higher than short yields.

In our analysis, we also use changes in yields. Consistent with our analysis of one-year bond

risk premia, for changes in yields we also consider a one-year period. In terms of notation, at

time t we consider a zero-coupon bond with time-to-maturity n which provides a payoff of one

dollar at maturity. Following the literature, t is at the observation frequency, which is monthly,

and n is in years as we consider continuously-compounded annual yields. We denote the log

price and continuously compounded yield of the zero-coupon bond by p
(n)
t and y

(n)
t = − 1

np
(n)
t ,

respectively. With a slight notational abuse of the ∆ operator, we then define the one-year

5Available at https://sites.google.com/view/jingcynthiawu/.
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Figure 1: Plots of yields (left panel) and changes in yields (right panel) for the period August 1971
through December 2018.

change of yield as

∆y
(n)
t = y

(n)
t − y(n)

t−12. (1)

The right panel of Figure 1 provides a plot of the one-year yield change for five maturities. The

panel presents also strong co-movement in the changes of yields, with a cyclical behavior that

has decreased a bit over time.

Our analysis centers around excess bond returns. These are the returns on holding a bond for

a particular period, in excess of a certain bond investment over that same period. As Cochrane

and Piazzesi (2005) point out, by looking at excess returns inflation and the interest rate level is

netted out and the excess returns thus represent real bond risk premia. Hence, we use the terms

excess bond returns and bond risk premia interchangeable. The log excess return of holding an

n-year bond from month t to t + 12, when its remaining maturity is n − 1 as 12 months and

thus one year has progressed, can then be expressed as

xr
(n)
t:t+12 = − (n− 1)

(
y

(n−1)
t+12 − y

(n)
t

)
+
(
y

(n)
t − y(1)

t

)
, (2)

which is the accounting identity in Campbell and Shiller (1991). The excess returns for the two-

and ten-year maturities are shown in Figure 2. Also in excess returns a co-movement is present.

There is greater variation on the ten-year excess returns than on the two-year excess returns.

Similar to the yield changes presented in the right panel of Figure 1, a cyclicality is present in

the excess return series. The lack of a strong drift, as was present for yields, and the cyclicality,

motivates our approach for using changes in yields for predicting excess returns.

In our analysis, we consider both the usual principal components of yields as well as principal

components of yield changes. To get a feeling as to what the principal components look like
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Figure 2: A plot of two- and ten-year excess returns for the period August 1971 through December
2018.

we show the full-sample factor loadings for the principal component analysis of yield changes in

Figure 3, along with the corresponding loadings for yield levels. There is a striking resemblance

in the loadings for the principal components of levels and changes in yields. For yield levels the

lines for principal component 1, 2 and 3 are commonly referred to as level, slope and curvature

due to the shape of the loadings. Hence it makes sense to refer to principal 1, 2 and 3 for yield

changes as changes in level, slope and curvature. These three principal components explain on

average 99.75 percent of the variation in the yield changes.6 Dynamics over time are shown in

Figure 4. For both yield levels and changes in yields the first principal component is by far

the most import factor to explain the dynamics of respectively yields and changes in yields.

In the top panel, the strong drifting behavior of the yields is also present in the first principal

component. This drift is absent from the principal components based on yield changes.

2.2 Testing for stationarity

A key reason for considering (principal components of) yield changes rather than levels is that

yields are non-stationary. We formally test for non-stationarity using an Augmented Dickey-

Fuller (ADF) test (Dickey and Fuller, 1979). As the mean of y
(n)
t is not zero, we include a

6In some of our analyses we also consider forward rates and changes in forward rates. For the loadings of the
principal components of changes in forward rates see Appendix A, Table A.1.
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Figure 3: Plots of the loadings of the first three principal components (‘PC 1’, ‘PC 2’ and ‘PC 3’)
of the yields (dotted lines) and the changes in yields (solid lines) for the period August 1971 through
December 2018.

Figure 4: Plots of the first three principal components (‘PC 1’, ‘PC 2’ and ‘PC 3’) of the yields (top
panel) and the changes in yields (bottom panel) for the period August 1971 through December 2018.

constant in the ADF regression,

y
(n)
t = α+ βt+ ρy

(n)
t−1 +

k−1∑
j=1

δj

(
y

(n)
t−j − y

(n)
t−j−1

)
+ vt, (3)
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where α is the drift term, β is the slope of the trend and vt an error term. The null hypothesis

of a unit root corresponds to ρ = 1 and the alternative hypothesis of stationarity to ρ < 1. We

also consider the case without trend, corresponding to β = 0. The number of lags is chosen to

minimize the Akaike Information Criterion. We run the test separately for each maturity n.

The results in Table 1 show that without a trend we cannot reject the null hypothesis of

non-stationarity at any conventional significance level for any maturity. This is not surprising

when looking at the yields over time on the left-hand side of Figure 1. The lowest p-value

is 0.395, for the one-year maturity. This is expected, as the one-year yield is generally least

persistent. The conclusion changes somewhat when considering the specification with trend.

Now, for maturities of one and two years, the null of non-stationarity is rejected. However, for

the other eight maturities the null is not rejected. Next, we transform the data and consider

differences of yields instead. Specifically, we replace y
(n)
t on the left-hand side of Equation (3)

with ∆y
(n)
t from Equation (1), and naturally similarly do so on the right-hand side for the y

(n)
t−1

and y
(n)
t−j − y

(n)
t−j−1 terms. The results of the tests for the transformed variables are also in Table

1. Now, for all maturities the null of non-stationarity is rejected at a 1% significance level,

irrespective of using the specification without or with trend. The conclusion for this analysis is

that for (at least the majority) of yields the null of non-stationarity cannot be rejected, while

this null is rejected for all maturities when looking at the transformed series.7

Augmented Dickey-Fuller (ADF) tests

Constant only Constant and trend
Yields Yield changes Yields Yield changes

n ADF stat p-value ADF stat p-value ADF stat p-value ADF stat p-value

1 -1.77 0.395 -4.53 0.000 -3.81 0.016 -4.51 0.001
2 -1.56 0.503 -4.64 0.000 -3.55 0.034 -4.66 0.001
3 -1.40 0.580 -4.84 0.000 -3.38 0.054 -4.88 0.000
4 -1.30 0.630 -4.60 0.000 -3.27 0.072 -4.65 0.001
5 -1.11 0.712 -4.48 0.000 -3.24 0.077 -4.55 0.001
6 -1.21 0.667 -4.51 0.000 -3.24 0.077 -4.59 0.001
7 -1.01 0.750 -4.66 0.000 -2.88 0.168 -4.76 0.001
8 -0.96 0.769 -4.50 0.000 -2.84 0.181 -4.61 0.001
9 -0.91 0.786 -4.54 0.000 -2.81 0.194 -4.67 0.001
10 -0.91 0.785 -4.64 0.000 -2.83 0.186 -4.80 0.000

Table 1: This table reports the results of an Augmented Dickey-Fuller (ADF) test for a unit root in
n-year yields and changes in n-year yields, over the period August 1971 through December 2018.

7For the corresponding results for forward rates see Appendix A, Tables A.2 and A.3
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2.3 Predicting excess bond returns

We now turn to one of our key analyses, to predict excess bond returns with yield factors.

To do so, we consider regressions of excess returns on a constant and a set of yield factors.

These regressions are done at the maturity level. The yield factors typically used are principal

components of the panel of yields y
(1)
t , y

(2)
t , . . . , y

(10)
t . We denote the yield factors based on

principal components of yield levels with Yt. With this notation, the typical excess bond return

regression takes the form

xr
(n)
t:t+12 = a

(n)
0 + b

(n)
0 Yt + e

(n)
t , (4)

where a
(n)
0 is the average excess return for maturity n and b

(n)
0 measures the sensitivity of

maturity n to the yield factors. We consider returns on bonds with n = 2, 3, 4, 5, 7 and 10 to

cover a broad range of maturities.8

Our suggestion is to use factors based on changes of yields, as defined in Equation (1). We

denote principal components based on changes in yields with ∆Yt. Keeping the remainder of

the approach unchanged, in this new approach the excess bond return regression becomes

xr
(n)
t:t+12 = a

(n)
1 + b

(n)
1 ∆Yt + e

(n)
t , (5)

where the subscripts on a
(n)
1 and b

(n)
1 distinguish these parameters from the usual approach from

Equation (4). Below we analyse the importance of considering factors based on yield changes

rather than factors based on yield levels.

2.3.1 In-sample predictive regressions

Before turning to an out-of-sample analysis, we first look at the full-sample regression to learn

about the usefulness of the factors to predict bond returns. The results of the regressions from

Equations (4) and (5) are presented in Table 2. Focusing first on the specification using factors

based on yields in Panel A, we see that the level factor (PC1) is not significant for any maturity.

The slope factor (PC2) is highly significant for all maturities, which is also expected looking at

Fama and French (1989) and Campbell and Shiller (1991). Finally, the curvature factor (PC3)

is also significant for maturities up to five years.

8Excess returns on six, eight and nine year bonds are over 99% correlated with the excess returns on seven
or ten year bonds and therefore show similar results. To keep down the size of the tables we do not report the
results on these maturities.
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Full-sample bond risk premia regressions

Panel A: Using Y Panel B: Using ∆Y

n const PC1 PC2 PC3 R2 const PC1 PC2 PC3 R2

2 0.62∗∗∗ 0.03 0.46∗∗∗ 1.22∗∗ 0.142 0.62∗∗∗ −0.06 0.53∗∗∗ 0.72∗ 0.132

(3.08) (1.23) (2.83) (2.25) (3.18) (-1.21) (2.77) (1.77)

3 1.08∗∗∗ 0.03 0.94∗∗∗ 2.22∗∗ 0.144 1.08∗∗∗ −0.11 1.00∗∗∗ 1.34∗ 0.139

(2.95) (0.65) (3.08) (2.22) (3.03) (-1.10) (2.93) (1.72)

4 1.52∗∗∗ 0.02 1.49∗∗∗ 3.10∗∗ 0.167 1.52∗∗∗ -0.14 1.40∗∗∗ 1.93∗ 0.136

(3.02) (0.38) (3.49) (2.20) (3.00) (-0.98) (2.94) (1.71)

5 1.74∗∗∗ 0.00 1.95∗∗∗ 3.70∗∗ 0.177 1.74∗∗∗ -0.15 1.69∗∗∗ 2.23 0.125

(2.84) (0.05) (3.74) (2.09) (2.75) (-0.82) (2.89) (1.54)

7 2.22∗∗∗ 0.00 2.98∗∗∗ 3.65 0.192 2.22∗∗ -0.14 2.34∗∗∗ 2.49 0.114

(2.67) (-0.02) (4.04) (1.50) (2.49) (-0.56) (3.02) (1.20)

10 2.62∗∗∗ -0.05 4.32∗∗∗ 3.26 0.203 2.62∗∗ -0.14 2.97∗∗∗ 2.13 0.090

(2.33) (-0.39) (4.27) (0.95) (2.09) (-0.37) (2.86) (0.70)

Table 2: This table reports output from the full-sample bond risk premia regressions. Panel A shows

results for the standard level, slope and curvature regression xr
(n)
t:t+12 = a

(n)
0 + b

(n)
0 Yt + e

(n)
t , thus using

principal components based on yield levels (these factors are denoted with Y ). Panel B shows the results

for the same regression for changes in level, slope and curvature, xr
(n)
t:t+12 = a

(n)
0 + b

(n)
0 ∆Yt + e

(n)
t , using

principal components based on yield changes (denoted with ∆Y ). In parentheses are t-statistics, which
are are obtained from Newey-West standard errors computed with 11 lags. The estimation is carried out
on monthly data from August 1971 through December 2018 using Liu and Wu (2021) bond yields. Three
(***), two (**) and one (*) asterisk(s) denote significance at the 1, 5 and 10 percent significance level,
respectively.

Second, we look at the predictive ability of changes in level, slope and curvature in Panel B of

Table 2. The first principal component has no significant predictive power. The one-year change

in yields resembles a time-series trend, but with some important differences with for example

Moskowitz and Pedersen (2012). We highlight three. First, whereas the lookback period of one

year is the same, we predict 12-month ahead bond returns instead of next month’s bond returns.

Second, we use the same predictive factor for all maturities, instead of a maturity specific trend.

Finally, we use past yield changes, not past bond returns. All three features reduce the predictive

ability. Of course applying principal components analyses to yields is aimed at formulating a

parsimonious factor model, not specifically trying to find the best predictor for excess bond

returns.

The second principal component of yield changes, the change-in-slope factor, significantly

predicts all bond maturities. As far as we know this is a new variable capable of predicting

bond risk premia. That this variable is able to predict bond risk premia actually makes intuitive

sense from an economic perspective. For example, in times of crises the central bank will lower

the target rate, often resulting in a steeper slope of the curve. Such periods also often coincide

with declining yields across the curve. Hence the positive sign makes sense. The third principal
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component, the change in the curvature, is only marginally significant for maturities up to four

years. Bonds with greater curvature gain more in price when yields fall than they lose when

yields rise. Hence an increase in curvature makes bonds more attractive, all else equal. Indeed

we see a positive sign for changes in curvature.

Comparing Panel A to Panel B, we observe that for all maturities, the R2s are larger when

using yield levels than yield changes, with an especially sizeable difference for longer maturities.

This suggests that in in-sample (!) predictive regressions of bond risk premia, principal compo-

nents of yield levels have more predictive power than principal components of yield changes.

2.3.2 Out-of-sample analysis

We now move to out-of-sample forecasting where we follow the procedure also used in Ludvigson

and Ng (2009). This means we estimate Equations (4) and (5) first for the in-sample period

August 1971 to December 1989 and use it to produce a 12-month forecast for December 1990.

Then we expand the estimation period by one month, re-estimate the equations and make

another 12-month forecast, and so on.9 The predictive performance of modelM for maturity n

is evaluated using the out-of-sample R2 as proposed by Campbell and Thompson (2008):

R2(n)
oos (M) = 1−

∑T−12
t=T0

(xr
(n)
t:t+12 − x̂r

(n)
t:t+12(M))2∑T−12

t=T0
(xr

(n)
t:t+12 − x̄r

(n)
t:t+12)2

, (6)

where T0 corresponds to the first out-of-sample observation, T is the length of the data set,

x̂r
(n)
t+12(M) is the prediction of model M for time to maturity n and x̄r

(n)
t:t+12 is the in-sample

average return, which serves as the benchmark prediction. A positive R2
oos implies the method

predicts better than the benchmark. The out-of-sample R2 can be interpreted as the percentage

reduction in Mean Squared Prediction Error compared to the benchmark. Significance of the

out-of-sample R2 is assessed using the CW (Clark and West, 2007) statistic. Following Clark

and West (2007), we define

σ̂2(n)

1 =
1

T − 12

T−12∑
t=T0

(xr
(n)
t:t+12 − x̄r

(n)
t:t+12)2,

σ̂2(n)

2 (M) =
1

T − 12

T−12∑
t=T0

(xr
(n)
t:t+12 − xr

(n)
t:t+12(M))2

9Results using a rolling window are presented in Table A.10 in Appendix G.
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and the adjusted measure

σ̂2(n)

2,adj(M) = σ̂2(n)

2 − 1

T − 12

T−12∑
t=T0

(x̄r
(n)
t:t+12 − xr

(n)
t:t+12(M))2.

This adjusted squared error can be interpreted as the part of the squared forecast error not

present in the more parsimonious model. The null hypothesis of equal R2
oos’s is rejected when

σ̂2(n)

1 sufficiently exceeds σ̂2(n)

2,adj(M). We can test this by regressing

(xr
(n)
t:t+12 − x̄r

(n)
t:t+12)2 − (xr

(n)
t:t+12 − xr

(n)
t:t+12(M))2 + (x̄r

(n)
t:t+12 − xr

(n)
t:t+12(M))2

on a constant and considering the t-statistic.10 The autocorrelation resulting from the overlap-

ping excess returns is taken into account by using HAC standard errors. We also use the Clark

and West (2007) statistic to assess if adding macro variables to the models significantly improves

predictions.

The results for the out-of-sample bond risk premia analysis are shown in Table 3. The first

two rows provide the R2
oos for the model with principal components based on yield levels, as

well as those for components based on yield changes. The results are very poor for principal

components based on yields. For none of the maturities, the out-of-sample R-squared is positive.

Thus, the good full-sample regression results for factors based on yield levels do not translate

into real-time predictive ability on top of the in-sample mean. In contrast, we find strong results

for principal component factors based on yield changes. In this case, for all maturities the out-

of-sample R-squared is positive. It ranges from 14.4% for ten-year bonds to 20.4% for four-year

bonds. These results are highly significant. The Clark and West (2007) significance levels all

fall below 1%. Hence, the in-sample predictive power of (stationary) yield changes translates

to out-of-sample forecasting power, in strong contrast to (non-stationary) yield levels.11 This is

also indicated by Root Mean Squared Prediction Errors, presented in Table A.7 in Appendix B.

Results for non-overlapping bond returns are also reported in Appendix D, Table A.9. We see

qualitatively similar results as in the first two rows of Table 3.

To dive deeper into the challenge of providing good out-of-sample results for factors based

10This term is simply σ̂2(n)

1 − σ̂2(n)

2,adj for individual observations.
11Another implication of our predictive results is that there should be correlation between the first principal

component of yield changes of one year and the the second principal component of yield changes of the preceding
year. This is indeed what we find: a correlation of -0.25. The negative sign means that a steepening (flattening)
of the curve last year is on average followed by declining (rising) yields in this year.
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on levels, we also re-examine the performance of the Cochrane and Piazzesi (2005) factor. This

factor is based on a linear combination of forward rates. Results for the out-of-sample analysis

using this factor, denoted with ‘CP’, are also provided in Table 3. The results for the Cochrane

and Piazzesi (2005) factor are in line with the results based on the model based on yield level

factors. For the CP model, the out-of-sample R-squared for all maturities is in the order of

magnitude of −40%. A possible explanation for this finding is unstable regression coefficients.

Andreasen et al. (2021) show that the sign of the yield spread (the second principal component

of yield levels) is positive in expansions but negative in recessions. This is also the case for

the Cochrane and Piazzesi (2005) factor. Of course a switching sign over time makes real-time

forecasting difficult.

Out-of-sample R-squared

n
Factors 2 3 4 5 7 10

Y -0.853 -0.653 -0.544 -0.420 -0.317 -0.147
∆Y 0.177

(0.003)

∗∗∗ 0.202
(0.003)

∗∗∗ 0.204
(0.002)

∗∗∗ 0.188
(0.002)

∗∗∗ 0.172
(0.002)

∗∗∗ 0.144
(0.003)

∗∗∗

CP -0.411 -0.407 -0.413 -0.398 -0.434 -0.449

Table 3: This table shows the out-of-sample R-squared when predicting out-of-sample one-year excess
bond returns for bonds with maturities (n) of 2 to 10 years with the first three principal components of
yields (Y ) or with the first three principal components of changes in yields (∆Y ) or with the Cochrane
and Piazzesi (2005) (‘CP’) factor based on a linear combination of forward rates. We only show the
p-values inside parentheses for ∆Y , as it is a one-sided test only applicable when doing better than the
benchmark (the historical mean). Three (***), two (**) and one (*) asterisk(s) denote significance at the
1, 5 and 10 percent significance level, respectively.

Cumulative squared prediction errors for the 2Y and 10Y maturities are shown in Figure 5.

The poor performance of predictions based on yield levels is persistent over time. When returns

are very high or very low, such as in 1992, 2002 and 2009, all predictions have large errors.

2.3.3 Economic value

Thornton and Valente (2012) and Sarno, Schneider and Wagner (2016) show that statistical

predictability of bond returns does not necessary translate to economic value for investors. To

analyze whether the factor model based on yield changes also provides economic value we con-

sider a mean-variance utility investor who has as benchmark a model based on the expectations

hypothesis that there is no predictability beyond just looking at the in-sample average. This

investor allocates wealth across a bond of maturity n and the risk free one-year bond yield. At
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Figure 5: Plots of cumulative squared forecast errors for the benchmark model, the model based on
yields and the model based on yield changes. Time to maturity is 24 months (left) or 120 months (right).
The full sample period is August 1971 through December 2018, with the in-sample period being until
December 1989.

time t the risky bond gets allocated weight

w
(n)
t (M) =

1

γ

x̂r
(n)
t:t+12(M)

(σ̂
(n)
t:t+12)2

, (7)

where x̂r
(n)
t:t+12(M) is the excess bond return forecast from model M, σ̂

(n)
t:t+12 is a volatility

estimator12 and γ is the coefficient of relative-risk aversion. This investment results in realized

portfolio returns

r
(n)
p,t:t+12(M) = w

(n)
t (M) · xr(n)

t:t+12 + xr
(1)
t:t+12. (8)

The realized average utility of this investment is

Ut:t+12(r
(n)
p,t:t+12;M) =

1

T − T0

T∑
t=T0

(
r

(n)
p,t:t+12(M)− 1

2
γ(r

(n)
p,t:t+12(M)− µ̂(n)

p (M))2

)
(9)

where T0 is the size of the estimation window used to form the first portfolio weights and

µ̂
(n)
p (M) is the average portfolio return. The economic gain from a given forecasting model is

evaluated using certainty equivalent returns (CER), where we compute the average utility based

on the in-sample average as the benchmark prediction, denoted with CER
(n)
0 , and for a given

forecasting model CER(n)(M).13 We then report ∆CER(n)(M) = CER(n)(M) − CER
(n)
0 .

This can be interpreted as the fee a mean-variance investor would be willing to pay to get

access to the forecasting model. As in Gargano, Pettenuzzo and Timmermann (2019), we use a

Diebold-Mariano test to evaluate whether ∆CERn(M) is different from zero.

12For this we take the historical volatility.
13Using the in-sample average as the benchmark prediction is consistent with Thornton and Valente (2012),
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Utility gains

n
Factors 2 3 4 5 7 10

Y -3.16% -2.83% -2.41% -1.90% -1.22% -0.08%
∆Y 0.58%

(0.054)

∗ 0.64%
(0.060)

∗ 0.67%
(0.055)

∗∗ 0.74%
(0.041)

∗∗ 0.85%
(0.035)

∗∗ 0.83%
(0.046)

∗∗

CP -1.06% -1.02% -1.10% -1.10% -1.22% -1.20%

Table 4: This table reports utility gains computed as the annualized difference between the Certainty
Equivalent of Return from trading based on predictive regressions and from trading on the predictions
of the historical average. A mean-variance investor with a relative risk aversion of γ = 5 is considered.
Excess bond returns are forecast using the principal components of yields (Y) or changes in yields (∆Y )
or with the Cochrane and Piazzesi (2005) (‘CP’) factor based on a linear combination of forward rates.
The p-values, which are in parentheses, are obtained from Newey-West standard errors computed with
11 lags, and calculated only in case there are utility gains relative to the benchmark. The estimation is
carried out on 12-month monthly overlapping data from August 1971 through December 2018 using Liu
and Wu (2021) bond yields. Three (***), two (**) and one (*) asterisk(s) denote significance at the 1, 5
and 10 percent significance level, respectively.

Table 4 shows the results for economic value when considering a standard value of risk

aversion with γ = 5. All CER changes are negative for the model using yields factors based

on yield levels. The CER changes shrink to zero monotonically as maturity increases, and

ranges from -3.16% for the two-year maturity to -0.08% for the ten-year maturity. The picture

is different for the portfolio based on yield factors based on yield changes. For all maturities,

the utility gain is positive. Also here, the utility gain increases monotonically with maturity.

It rises from 0.58% for the two-year maturity, to 0.83% for the ten-year maturity. All changes

are significant, with most at the 5% level. Thus, compared to the benchmark of the historical

mean an investor would not want to have the forecasts based on the principal components

of yield levels, but the same investor would like to have the forecasts based on the principal

components of changes in yields. The results in Table 3 document statistical significant out-of-

sample predictive power. The new results in Table 4 show that this generates also significance

from an economic viewpoint. For completeness, results using the CP factor are shown in the

last line of Table 4. Forecasts based on the CP factor do not offer utility gains for any maturity,

in line with the negative out-of-sample R-squared found earlier. For its lack of predictive power,

we disregard the CP factor in the remainder of this paper.

Sarno et al. (2016) and Gargano et al. (2019).
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3 Adding macro data

Abundant literature investigates the link of the yield curve and the macroeconomy (see the

references in the introduction). Macro factors are considered on top of the typical yield factors.

Our finding in Section 2 that factors based on yield changes should be preferred over factors

based on yield levels at least for out-of-sample analysis, begs for a re-investigation of several

earlier findings. In this section we extract factors from a large set of macro data and add those

to yield factors. This way our results can be directly compared with those of the macro spanning

test in Ludvigson and Ng (2009), the consequences of using vintage instead of final macro data in

Ghysels et al. (2018), and the competition between forecasts from linear regression and machine

learning in Bianchi et al. (2021b) when both methods have access to yield data and a large set of

macro data. Section 3.1 presents the macro data we use and our method for this investigation.

Section 3.2 presents the results of the analysis.

3.1 Macro data and methodology

The macro data set is provided by McCracken and Ng (2016).14 It consists of 128 variables,

divided over the categories (i) output, (ii) labor market, (iii) housing sector, (iv) orders and

inventories, (v) money and credit, (vi) exchange and interest rates, (vii) prices or price indices

and (viii) stock market. The authors provide an extensive description of the variables and

the transformations that have been used to make these data stationary. This data set closely

resembles the data set used by Ludvigson and Ng (2009). We make use of the final data set

of January 2019 as well as vintage data sets starting in August 1998. A full list of the macro

variables and their full-sample factor loadings on the first eight principal components can be

found in Table A.13 in Appendix A. Following Ludvigson and Ng (2009) we focus on the first

eight principal components of the economic series of the macro data set of McCracken and Ng

(2016), which we denote with Zt.

The methodology closely follows our analysis without macro variables of Section 2 and Lud-

vigson and Ng (2009). Specifically, we extend Equations (4) and (5) by adding the principal

components of the macro series, collected in Zt. For the case with the yield factors based on

14Available at https://research.stlouisfed.org/econ/mccracken/fred-databases/.
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yield levels, the regression thus becomes,

xr
(n)
t:t+12 = a

(n)
0 + b

(n)
0,1Yt + b

(n)
0,2Zt + e

(n)
t , (10)

where the elements in b
(n)
0,2 capture the sensitivity of the excess returns with respect to the macro

factors. For the case with yield factors based on yield changes, the regression becomes

xr
(n)
t:t+12 = a

(n)
1 + b

(n)
1,1 ∆Yt + b

(n)
1,2Zt + e

(n)
t . (11)

We estimate Equations (10) and (11) in an out-of-sample fashion similar to Section 2.3.2. Thus,

at each point in time we only use historically available data to estimate the parameters and

make a forecast for each bond maturity. Then we expand the sample by a new observation, and

so on.

In the case of macro data even with principal components the dimension is large. We

therefore follow the two-stage approach outlined in Ludvigson and Ng (2009). First, we regress

excess returns on individual principal components and a constant. We retain the components

that are significant at a one percent level. Second, we consider regressions of excess returns

on the principal components of yields or yield changes, and a subset of components that were

significant in the first stage. We finally select the model with the lowest Bayesian Information

Criterion (BIC; see Schwarz, 1978). This procedure is repeated after every observation, and the

number of components included in the regression can thus vary over time.

3.2 Adding macro data

We start by looking in-sample at final macro data, in order to determine which macro factors

are most important and how they interact with the yield and changes-in-yields factors. Panel

A of Table 5 shows the results for combining yield factors with macro factors. Ludvigson and

Ng (2009) look at maturities up to five years. They find that the first principal component,

dubbed the real factor for its high correlation with measures of real output and employment,

is the most important. In our case, we only find the second and third principal component of

macro variables to be significant, although the first principal component has p-values just above

1%.15 Additional results show that the second principal component loads heavily on several

15Ranging from 1.06% for n = 3 to 5.00% for n = 10.
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interest rate spreads, and its significance for two-year bonds comes at the expense of the second

principal component of the yields, which is the slope factor. The correlation is 35%, explaining

why they are not both significant at the same time. The third principal component of the macro

data is more like an inflation factor, and it is significant for all maturities except the ten-year

maturity. Plots of the second and third macro principal components are shown in Figure 6.

Full-sample bond risk premia regressions – Including macro factors

Yield factors Macro factors

n const. PC 1 PC 2 PC 3 PC 2 PC 3 R2

Panel A: Using Y as yield factors

2 0.61*** 0.07 0.06*** 1.42** 0.142

(3.08) (1.23) (2.80) (2.25)

3 1.07*** 0.04 0.79*** 2.14** 0.13*** 0.157

(3.02) (0.95) (2.58) (2.21) (2.73)

4 1.51*** 0.08 0.90** 2.72** 0.27*** -0.26** 0.198

(3.12) (1.17) (1.77) (1.95) (2.75) (-2.02)

5 1.72*** 0.07 1.22** 3.23* 0.33*** -0.31 0.208

(2.95) (0.90) (1.98) (1.86) (2.79) (-1.96)

7 2.19*** 0.10 2.00** 3.03 0.47*** -0.41** 0.221

(2.75) (0.84) (2.27) (1.26) (2.85) (-1.91)

10 2.57** -0.01 3.90*** 3.03 0.40** 0.214

(2.38) (-0.04) (3.76) (0.90) (2.59)

Panel B: Using ∆Y as yield factors

2 0.62*** -0.06 0.53*** 0.72* 0.132

(3.16) (-1.21) (2.76) (1.78)

3 1.09*** -0.09 0.95*** 1.20 0.13* 0.154

(3.08) (-0.94) (2.69) (1.59) (1.93)

4 1.53*** -0.07 1.22** 1.27 0.23** -0.21** 0.176

(3.12) (-0.49) (2.44) (1.21) (2.48) (-2.09)

5 1.76*** -0.04 1.42** 1.24 0.34*** -0.32** 0.184

(2.91) (-0.24) (2.29) (0.93) (2.90) (-2.44)

7 2.25*** 0.03 1.91** 0.92 0.55*** -0.51*** 0.191

(2.69) (0.11) (2.36) (0.50) (3.48) (-2.89)

10 2.68** 0.12 2.32** -0.24 0.82*** -0.76*** 0.182

(2.31) (0.34) (2.16) (-0.09) (3.64) (-3.03)

Table 5: This table reports output from the full-sample bond risk premia regressions including the
macro factors. Panel A shows results for the standard level, slope and curvature regression with macro

factors xr
(n)
t:t+12 = a

(n)
0 + b

(n)
1 Yt + b

(n)
2 Zt + e

(n)
t , where Yt are the first three principal components of yields

and Zt are the most significant principal components of the macro data. Panel B shows the results for

the same regression for changes in level, slope and curvature, xr
(n)
t:t+12 = a

(n)
0 + b

(n)
1 ∆Yt + b

(n)
2 Zt + e

(n)
t ,

where ∆Yt are the first three principal components of yield changes. In parentheses are t-statistics, which
are are obtained from Newey-West standard errors computed with 11 lags. The estimation is carried out
on monthly data from August 1971 through December 2018 using Liu and Wu (2021) bond yields. Three
(***), two (**) and one (*) asterisk(s) denote significance at the 1, 5 and 10 percent significance level,
respectively.

Next, we look at the results in Panel B of Table 5 for combining factors from changes in

yields with macro data. As with yield levels, the second and third principal components are
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Figure 6: Plots of the second and third principal component (‘Macro PC 2’ and ‘Macro PC 3’) of the
macro data for the period August 1971 through December 2018.

included, a noticeable difference being that the second principal component is now also selected

for three- and ten-year bonds. Hence both interest spread information - which we no longer have

as we do not have the second principal component of yield levels - and inflation are in-sample

important additions to the principal components of the yield changes. It is also important to

highlight that in terms of R2, a model based on yield levels again offers a better in-sample fit

than a model based on yield changes.

Of course the key question is whether macro data add to the principal components of the

yield changes when we move from in-sample to out-of-sample forecasting. Thus, we repeat the

analysis of Sections 2.3.2 and 2.3.3, with the macroeconomic variables included. Table A.6 shows

the results for the out-of-sample analysis. For comparison purposes, the results from Table 3

using yield levels or yield changes as yield factors are added in the first row of Panel A (yield

levels) and Panel B (yield changes), respectively. The second row of each panel presents the

results for the out-of-sample analysis when using the final data, corresponding to the macro data

used in Table 5. The yield level factors in combination with macro data still lead to negative

out-of-sample R-squareds. For the principal components of yield changes as yield factors we see

that adding final macro data generally reduces the out-of-sample R-squared. This is strongest

for the shorter maturities. The difference increases for longer maturities, and for the ten-year

maturity the R-squared is actually higher when using final macro data when compared to using

no macro data and only factors based on yield changes. The R-squared for ten-year bonds

improves from 14.4% to 23.0%, with the difference having a Clark and West t-statistic of 2.67.

Ghysels et al. (2018) show the importance of using real-time macroeconomic variables rather

than final data. We follow their approach and repeat the out-of-sample analysis using vintage
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data. Unfortunately, vintage data are only available for a part of the full sample period, from

August 1998 onward. For the part of the sample where vintage data is not available, we use

lagged final data, to allow for a one-month publication delay. The results using vintage data are

also available in Table A.6.16 For short maturities, the conclusion is similar to using final data:

The out-of-sample R-squared decreases relative to using only yield data. They are however a bit

larger than using final macro data, indeed highlighting the importance of real-time data. For

maturities of five years and longer, the vintage macro data do however add value even when

compared to yield changes. The largest out-of-sample R-squared is obtained for ten-years, and

reaches 26.0%.

Out-of-sample R-squared – Including macro factors

n
Factors 2 3 4 5 7 10

Panel A: Using Y as yield factors

Y -0.853 -0.653 -0.544 -0.420 -0.317 -0.147
Y and Zf -0.593 -0.444 -0.394 -0.297 -0.226 -0.079
Y and Zv -0.745 -0.559 -0.470 -0.365 -0.285 -0.141

Panel B: Using ∆Y as yield factors

∆Y 0.177
(0.004)

∗∗∗ 0.202
(0.003)

∗∗∗ 0.204
(0.002)

∗∗∗ 0.188
(0.002)

∗∗∗ 0.172
(0.002)

∗∗∗ 0.144
(0.002)

∗∗∗

∆Y and Zf 0.057
(0.008)

∗∗∗ 0.093
(0.006)

∗∗∗ 0.140
(0.001)

∗∗∗ 0.184
(0.000)

∗∗∗ 0.166
(0.000)

∗∗∗ 0.230
(0.000)

∗∗∗

∆Y and Zv 0.127
(0.011)

∗∗∗ 0.161
(0.002)

∗∗∗ 0.186
(0.001)

∗∗∗ 0.197
(0.001)

∗∗∗ 0.220
(0.000)

∗∗∗ 0.260
(0.000)

∗∗∗

Table 6: This table shows the out-of-sample R-squared when predicting out-of-sample one-year excess
bond returns with the first three principal components of yield levels (Y ) or yield changes (∆Y ) alone and
with adding significant (at the 1% level) macro factors. The macro factors are either based on vintage
data (Zv) or final data (Zf ). The p-values are provided in parentheses. Three (***), two (**) and one
(*) asterisk(s) denote significance at the 1, 5 and 10 percent significance level, respectively. As vintage
data are only available from August 1998 onward, lagged final data are used before this period.

Table 7 shows the Certainty Equivalent of Return (CER) gains a mean-variance investor

would obtain using forecasts of the model with factors based on yield levels (first row Panel A)

or yield changes (first row Panel B) or the forecasts from combining the these factors with final

(second row) or vintage (third row) macro data, compared to the benchmark (the historical

mean). As before, whereas the prior analysis focuses on statistical significance, this analysis

investigates economic significance. Economic value is negative for yield levels, also when com-

bining them with macro data. For factors based on yield changes we see that for final macro

data only for intermediate maturities it pays to switch from the naive benchmark to the factor

model. However, for all but the two-year maturity, vintage macro data significantly increase the

16Results from August 1999 onwards using strictly only vintage data are reported in Table A.8 in the Appendix.
Also here, the out-of-sample R2 is negative when using yields/forwards rates, and positive when using changes in
yields/forward rates.
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Certainty Equivalent Returns. This is in sharp contrast to Ghysels et al. (2018) who find that

the results of Ludvigson and Ng (2009) become insignificant when moving from final to vintage

macro data. We think this is mainly caused by the fact that with yield changes we more often

select the interest rate and inflation factors, which contain a lot of market data and hence are

less affected by using vintage data. In the case of principal components of yield levels, Ludvigson

and Ng (2009) find that the real factor has most added value. The real factor is dominated by

pure economic data that are revised over time. The results for vintage data are even stronger

than for final data, which only significantly increase the Certainty Equivalent Returns for the

four- through ten-year maturities.

Utility gains – Including macro factors

n
Factors 2 3 4 5 7 10

Panel A: Using Y as yield factors

Y -3.16% -2.83% -2.41% -1.90% -1.22% -0.08%
Y and Zf -2.12% -1.84% -1.66% -1.22% -0.69% -0.20%
Y and Zv -2.82% -2.45% -2.11% -1.67% -1.09% -0.12%

Panel B: Using ∆Y as yield factors

∆Y 0.58%
(0.054)

∗ 0.64%
(0.060)

∗ 0.67%
(0.055)

∗∗ 0.74%
(0.041)

∗∗ 0.85%
(0.035)

∗∗ 0.83%
(0.046)

∗∗

∆Y and Zf 0.55%
(0.197)

0.59%
(0.233)

0.88%
(0.025)

∗∗ 1.09%
(0.007)

∗∗∗ 1.08%
(0.020)

∗∗ 0.99%
(0.114)

∆Y and Zv 0.36%
(0.272)

0.76%
(0.030)

∗∗ 1.04%
(0.002)

∗∗∗ 1.14%
(0.000)

∗∗∗ 1.37%
(0.000)

∗∗∗ 1.64%
(0.000)

∗∗∗

Table 7: This table reports utility gains computed as the annualized difference between the Certainty
Equivalent of Return from trading based on predictive regressions and from trading on the predictions
of the historical average. A mean-variance investor with a relative risk aversion of γ = 5 is considered.
Excess bond returns are forecast using the principal components of yield levels (Panel A) or changes in
yields (∆Y ) (Panel B) alone and with adding significant (at the 1% level) macro factors. The macro
factors are either based on vintage data (Zv) or final data (Zf ). The p-values are in parentheses. Three
(***), two (**) and one (*) asterisk(s) denote significance at the 1, 5 and 10 percent significance level,
respectively. As vintage data are only available from August 1998 onward, lagged final data are used
before this period.

4 Machine learning

Machine learning has been introduced to financial forecasting only recently. Heaton et al. (2017)

study portfolio construction using deep neural networks. Gu et al. (2020) compare machine

learning techniques for asset pricing. Even more recently, Bianchi et al. (2021b), forecast excess

bond returns using a multitude of machine learning techniques. They consider both a yields-only

setting, as in Cochrane and Piazzesi (2005), and a setting with unspanned macro variables, as

in Ludvigson and Ng (2009).
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The potential benefit of Machine Learning is that it is not bound by a linear relationship

between future bond returns and current forward rates and macro data. As such it can contribute

to the academic debate on how macroeconomic variable relate to the yield curve, a discussion

typically centered around the spanning hypothesis (see, e.g., Bauer and Rudebusch (2016)).

Also, unlike linear regression, it does not require principal components analysis to reduce the

dimension of the problem. It simply searches for the best mapping of all information available

at time t, xt, using the function g(·),

xrt:t+12 = g(xt). (12)

Bianchi et al. (2021b) and Bianchi et al. (2021a) conclude Neural Networks - the top performer

amongst a whole battery of machine learning techniques - beat linear regression both in terms

of out-of-sample R-squared and economic value when predicting bond risk premia, regardless of

only using forward rates or combining forward rates with final macro data.

The results in these two papers are, however, based on using principal components analysis

applied to the level of forward rates. We have seen in Section 2 that both for out-of-sample R-

squared and economic value principal components of yield levels have no predictive nor economic

value, whereas forecasts from linear regressions making use of principal components of changes

in yields do have predictive and economic value. Hence the top performing machine learning

technique has been pitted against non-performing forecasts from linear regression. It is therefore

of interest to examine how forecasts from neural networks compare to better real-time forecasts

based on linear regressions applied to the stationary principal components of yield changes.

We therefore repeat the Bianchi et al. (2021b) and Bianchi et al. (2021a) analysis, but now

using changes rather than levels. To stay as close as possible to these two papers, we show

results for forward rates and changes in forward rates. In our implementation we closely follow

the implementation of the two aforementioned papers and thus omit a full detailed description of

the implementation.17 First, we turn to out-of-sample forecasting. Table 8 presents the results

of four analyses. We consider both regressions, as in Section 2, as well as neural networks. For

both, we use a variant using forward levels and a variant using changes in forwards. For the

neural network approach this means the input data xt from Equation (12) are either forwards

17For more information on the estimation of the Neural Network see Appendix B. The results we present are
for NNs with 1 hidden layer of 3 nodes (only forwards) or 32 nodes (forwards + macro), which were among the
best performing ML techniques in Bianchi et al. (2021a). We have also considered alternative configurations and
obtain similar results (results available upon request).
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(which we denote with f) or changes in forwards (∆f).18 For the regression approach this means

that we adjust Equation (4) to allow for principal components based on forward levels (which

we denote with F ), and adjust Equation (5) to allow for principal components based on forward

changes (∆F ). The first row of the table, for the regression approach using principal components

of forward rates, shows a decrease in the out-of-sample R-squared, much like the results in Table

3 for yield levels. An exception is the ten-year maturity. When using the level of forwards in a

neural network, presented in the second row, one of the key results of Bianchi et al. (2021b) and

Bianchi et al. (2021a) is replicated: The neural network increases the out-of-sample R-squared,

with the exception of the shortest (two-year) maturity, although not by much.

Interestingly, rows 3 and 4 in Table 8, however, show that when using changes in forward rates

linear regression provides much higher reductions in mean squared prediction errors. The out-

of-sample R-squared is large and statistically significant. It improves not only on the regression

using factors based on forward levels, but also on the neural network! The out-of-sample R-

squared decreases with maturity, and ranges from 12.5% for the ten-year maturity to 19.9% for

the two-year maturity. Row 4 of the table shows that the results for neural networks also improve

when using changes in forward rates. Jung and Shah (2015) and Sugiyama et al. (2013) already

note that machine learning techniques can also run into severe problems with non-stationary

data. However, it is also clear that neural networks cope much better with non-stationary

data than linear regressions. The deterioration in results is modest for neural networks when

moving from changes in forward rates to levels of forward rates. In contract, the differences for

linear regression are enormous. Nevertheless, our results show that regressions perform better

than neural networks, when in both cases data are suitably transformed, and that the best

performing model is obtained when just simply using principal component analysis based on

one-year changes of the series.

It is also interesting to compare the regression results for changes in forward rates in Table

8 with those for changes in yields in Table 3. Both results are highly significant, showing

robustness to the choice for yields or forward rates. The out-of-sample R-squared is a bit higher

for changes in forwards for the two-year maturity, and a bit higher for changes in yields for all

other maturities. The qualitative result is identical for forwards and yields: One should use the

one-year change in the series rather than the level.

18As neural networks are a data compression technique themselves (and can even be considered a flexible
generalization of PCA), we do not separately consider the case of taking principal components as input data.
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Out-of-sample R-squared – With neural networks

n
Model Factors 2 3 4 5 7 10

Regression F −0.315 −0.320 −0.165 −0.084 −0.056 0.033
(0.003)

∗∗

Neural Network f −0.021 0.009
(0.239)

0.016
(0.189)

0.024
(0.133)

0.031
(0.108)

0.036
(0.003)

∗

Regression ∆F 0.199
(0.002)

∗∗∗ 0.197
(0.002)

∗∗∗ 0.180
(0.003)

∗∗∗ 0.157
(0.004)

∗∗∗ 0.139
(0.003)

∗∗∗ 0.125
(0.004)

∗∗

Neural Network ∆f −0.015 0.031
(0.047)

∗∗ 0.046
(0.029)

∗∗ 0.054
(0.024)

∗∗ 0.053
(0.021)

∗∗∗ 0.066
(0.013)

∗∗

Table 8: This table shows the out-of-sample R-squared when predicting out-of-sample one-year excess
bond returns using both regressions and neural networks. For regressions factors based on both forwards
(denoted with F ) and changes in forwards (∆F ) are used, while for neural networks the input data are
either forwards themselves (f) or changes in forwards (∆f). The p-values are provided in parentheses.
Three (***), two (**) and one (*) asterisk(s) denote significance at the 1, 5 and 10 percent significance
level, respectively.

Next, we turn to economic value of the neural network. Table 9 shows the results. The

Certainty Equivalent Returns clearly improve when using regression applied to the principal

components of changes in forward rates (row 3) compared to using regression applied to the

principal components of forward rate levels (row 1). Also the neural network results improve

when providing it with changes in forward rates instead of forward rate levels. In terms of

economic value, the forecasts from linear regression based on stationary data are more valuable

to a utility investor than the forecasts from neural networks, regardless of whether these neural

networks use forward rate levels or changes in forward rates. This is consistent with the findings

on statistical significance.

Utility gains – With neural networks

n
Model Factors 2 3 4 5 7 10

Regression F −0.72% −0.61% −0.31% 0.08%
(0.448)

0.26%
(0.357)

0.73%
(0.149)

Neural Network f −0.01% 0.13%
(0.124)

0.19%
(0.064)

∗ 0.20%
(0.053)

∗ 0.25%
(0.049)

∗∗ 0.25%
(0.054)

∗

Regression ∆F 0.04%
(0.427)

0.39%
(0.126)

0.60%
(0.070)

∗ 0.76%
(0.047)

∗∗ 0.89%
(0.038)

∗∗ 0.94%
(0.032)

∗∗

Neural Network ∆f −0.09% 0.09%
(0.261)

0.29%
(0.062)

∗ 0.40%
(0.042)

∗∗ 0.47%
(0.039)

∗∗ 0.53%
(0.028)

∗∗

Table 9: This table reports utility gains computed as the annualized difference between the Certainty
Equivalent of Return from trading based on predictive regressions or neural networks, and from trading
on the predictions of the historical average. A mean-variance investor with a relative risk aversion of
γ = 5 is considered. For regressions factors based on both forwards (denoted with F ) and changes in
forwards (∆F ) are used, while for neural networks the input data are either forwards themselves (f) or
changes in forwards (∆f). The p-values are in parentheses. Three (***), two (**) and one (*) asterisk(s)
denote significance at the 1, 5 and 10 percent significance level, respectively.

The added benefit of Machine Learning techniques should lie in combining different sources of

information, as this increases the opportunities to find non-linear relationships in the data. We
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therefore also look at combining forward rates with macro data. Whereas Bianchi et al. (2021b)

use final macro data in forecasts, Feng et al. (2020) use real-time macro data to forecast bond

returns with machine learning. They report some forecasting power for both linear and machine

learning techniques with vintage macro data. This does not translate to positive economic

value for investors in a mean-variance setting. However, the differences between the results of

Bianchi et al. (2021b) and Feng et al. (2020) cannot solely be attributed to the use of final

versus vintage macro data. Firstly, Feng et al. (2020) do not include yield information in their

forecasts, which was responsible for a substantial share of the predictability in the work of

Bianchi et al. (2021b). This also implies that the paper does not offer evidence pro or contra the

aforementioned spanning hypothesis. As yield information was not included in the forecasts, we

do not know if any of the macro variables’ forecasting power was also contained in (‘spanned

by’) the yield curve. Secondly, they only consider 56 ‘true’ macro variables, such as employment

and production, but disregard financial variables, such as price, stock market, bond market and

exchange rate information. These variables were part of the 128 variable data set of Bianchi et al.

(2021b) and were also important for forecasting. Finally, they consider a different time period,

different maturities19 and a different approach to some of the machine learning techniques. Thus,

it is not yet clear what the impact is of the use of vintage macro data on machine learning.

Table 10 presents the out-of-sample R-squared for both regression models and neural net-

works, using levels and changes in the variables, and considering final and vintage macro data.

Panel A of the table presents the results using final macro data. Focusing first on the neural net-

work, making use of all individual forward rates and final macro data, cf. Bianchi et al. (2021b),

we see that the neural network provides sizeable improvements compared to the historical mean

as the benchmark. The out-of-sample R-squared ranges from 2.0% for the two-year maturity to

20.9% for the ten-year maturity. It is also interesting to see that in contrast to the case of using

forward rates only, when combining forward rates with macro data the neural network does not

benefit from using changes in forward rates (final row of Panel A). Most important however, is

the comparison with linear regressions based on the principal components of changes in forward

rates (third row). For all maturities but the seven-year maturity, regression does better than

the neural network. Hence by applying regression to changes in forward rates instead of forward

rate levels, the conclusion of Bianchi et al. (2021b), that neural networks outperform linear

19They only forecast bonds with maturities of up to five years, whereas the strongest predictability was found
for seven and ten year bonds in Bianchi et al. (2021b).
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regressions, is no longer valid.

Next, we look at Panel B, using vintage macro data. We now see that whereas the out-

of-sample R-squared of linear regression improves with the use of vintage data, those of neural

networks deteriorate substantially. When using forward levels and neural networks, there now is

positive performance for bonds with maturities of 4 years and higher. The level of the R-squared

is furthermore reduced, for example going from 12.4% to 2.3% for the four-year maturity, and

from 20.9% to 17.1% for the ten-year maturity. For neural networks using changes in forwards,

results are similar when using final compared to vintage macro data. Regressions however only

do better when using vintage macro data when compared to final macro data, just as was the

case for using yield changes rather than forward changes. Thus, the outperformance of neural

networks over linear regressions also does not hold for vintage macro data.

Out-of-sample R-squared – With neural networks and including macro data

n
Model Factors 2 3 4 5 7 10

Panel A: Final macro data

Regression F −0.185 −0.108 −0.090 −0.019 −0.061 −0.003

Neural Network f 0.020
(0.016)

∗∗ 0.099
(0.006)

∗∗∗ 0.124
(0.004)

∗∗∗ 0.154
(0.003)

∗∗∗ 0.173
(0.001)

∗∗∗ 0.209
(0.001)

∗∗∗

Regression ∆F 0.108
(0.004)

∗∗∗ 0.128
(0.002)

∗∗∗ 0.160
(0.001)

∗∗∗ 0.171
(0.001)

∗∗∗ 0.171
(0.000)

∗∗∗ 0.237
(0.000)

∗∗∗

Neural Network ∆f −0.358 −0.150 −0.099 −0.024 0.017
(0.003)

∗∗ 0.116
(0.001)

∗∗∗

Panel B: Vintage macro data

Regression F −0.243 −0.200 −0.113 −0.036 −0.003 0.032
(0.005)

∗∗∗

Neural Network f −0.132 −0.015 0.023
(0.042)

∗∗ 0.067
(0.025)

∗∗ 0.106
(0.013)

∗∗ 0.171
(0.003)

∗∗∗

Regression ∆F 0.195
(0.005)

∗∗ 0.175
(0.001)

∗∗∗ 0.208
(0.001)

∗∗∗ 0.225
(0.000)

∗∗∗ 0.232
(0.000)

∗∗∗ 0.270
(0.000)

∗∗∗

Neural Network ∆f −0.345 −0.144 −0.084 −0.022 0.016
(0.012)

∗∗ 0.105
(0.004)

∗∗∗

Table 10: This table shows the out-of-sample R-squared when predicting out-of-sample one-year excess
bond returns using both regressions and neural networks, both with final macro data (Panel A) and
vintage macro data (Panel B). For regressions factors based on both forwards (denoted with F ) and
changes in forwards (∆F ) are used, while for neural networks the input data are either forwards themselves
(f) or changes in forwards (∆f). The p-values are provided in parentheses. Three (***), two (**) and one
(*) asterisk(s) denote significance at the 1, 5 and 10 percent significance level, respectively. As vintage
data are only available from August 1998 onward, lagged final data are used before this period.

We finally turn to economic significance for all variants. The results on economic value in

Table 11 are slightly different, in the sense that also for the neural networks investors would be

willing to pay a premium. For final macro data we see that a mean-variance investor would be

willing to pay the most for the neural network forecasts for all maturities. However, for vintage

macro data it is the other way around again, and the investor would be willing to pay most
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for the linear regression forecasts for all maturities. Comparing all output, the investor gains

most when using regressions based on one-year changes in forward rates, for the majority of the

maturities.

Utility gains – With neural networks and including macro data

n
Model Factors 2 3 4 5 7 10

Panel A: Final macro data

Regression F -0.66% -0.30% -0.32% 0.05%
(0.469)

-0.10% -0.06%

Neural Network f 0.90%∗∗∗
(0.007)

1.10%∗∗∗
(0.003)

1.10%∗∗∗
(0.002)

1.17%∗∗∗
(0.002)

1.21%∗∗∗
(0.001)

1.38%∗∗∗
(0.001)

Regression ∆F 0.77%∗∗
(0.026)

0.86%∗∗
(0.020)

1.07%∗∗∗
(0.003)

1.13%∗∗∗
(0.003)

1.16%∗∗∗
(0.009)

1.02%∗∗∗
(0.063)

Neural Network ∆f 0.74%∗
(0.079)

0.76%
(0.111)

0.80%
(0.114)

0.81%
(0.126)

0.91%∗
(0.098)

1.30%∗∗
(0.027)

Panel B: Vintage macro data

Regression F -1.07% -0.71% -0.32% 0.02%
(0.490)

0.20%
(0.388)

0.53%
(0.209)

Neural Network f 0.45%
(0.150)

0.66%∗
(0.075)

0.64%∗
(0.083)

0.71%∗
(0.079)

0.84%∗∗
(0.044)

1.21%∗∗
(0.010)

Regression ∆F 0.50%∗
(0.085)

0.92%∗∗
(0.010)

1.20%∗∗∗
(0.001)

1.34%∗∗∗
(0.000)

1.50%∗∗∗
(0.000)

1.75%∗∗∗
(0.000)

Neural Network ∆f 0.54%
(0.181)

0.53%
(0.144)

0.51%∗
(0.059)

0.48%∗
(0.061)

0.63%∗
(0.068)

1.10%∗∗
(0.037)

Table 11: This table reports utility gains computed as the annualized difference between the Certainty
Equivalent of Return from trading based on predictive regressions or neural networks, and from trading
on the predictions of the historical average, both with final macro data (Panel A) and vintage macro data
(Panel B). A mean-variance investor with a relative risk aversion of γ = 5 is considered. For regressions
factors based on both forwards (denoted with F ) and changes in forwards (∆F ) are used, while for neural
networks the input data are either forwards themselves (f) or changes in forwards (∆f). The p-values
are in parentheses. Three (***), two (**) and one (*) asterisk(s) denote significance at the 1, 5 and
10 percent significance level, respectively. As vintage data are only available from August 1998 onward,
lagged final data are used before this period.
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5 Conclusion

The most popular way to model the yield curve is the apply principal components analysis to

yields, resulting in the well-known level, slope and curvature factors. Yield levels, however, are

non-stationary. Moreover, recent literature documented that real-time forecasts for bond risk

premia based on these three factors are very poor.

We propose to look at the same methodology, but now based on changes in yields to overcome

the non-stationarity problem. Applying principal components analysis to changes in yields

results in changes in level, slope and curvature as the three most important factors. We show

that these new factors are more than capable of providing good real-time forecasts for one-year

excess bond returns. Especially changes in the slope are a strong predictor of the variation in

bond risk premia. We use these new factors to revisit the spanning test for macro data. We find

that macro data do provide added value for predicting the longer bond maturities, both for final

and vintage macro data. This result for vintage data contrasts earlier findings in the academic

literature failing to reject the spanning test.

We also use our new factors to check the recent finding that machine learning techniques

provide better forecasts for bond risk premia than linear regression forecasts. Whereas neural

networks do provide remarkably good forecasts without providing structure to the data - not

using principal components and working with non-stationary forward rates - we do find that

with our new factors linear regressions provide better forecasts than neural networks.

These results pose a new challenge to the Efficient Market Hypothesis. The new factor model

also provides a higher bar to beat in terms of real-time forecasting of bond risk premia.
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Appendix

A Results using forward rates and changes in forward rates

For robustness, we here repeat our analysis using forward rates and changes in forward rates

instead of yields and changes in yields. Results are comparable: predictions based on forward

rate levels are worse than the benchmark and predictions based on changes in forward rates

outperform the benchmark, with positive and significant out-of-sample R2s.

PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 PC 9 PC 10

n=12 0.35 0.69 0.10 0.27 0.34 0.16 0.25 0.29 0.10 0.15
n=24 0.36 0.36 -0.04 -0.02 -0.13 -0.12 -0.23 -0.43 -0.33 -0.60
n=36 0.34 0.14 -0.09 -0.17 -0.22 -0.19 -0.22 -0.37 -0.04 0.75
n=48 0.33 -0.01 -0.10 -0.23 -0.24 -0.19 -0.08 0.17 0.80 -0.23
n=60 0.29 -0.09 0.08 -0.40 -0.09 -0.18 -0.13 0.69 -0.46 0.00
n=72 0.31 -0.21 -0.43 0.02 -0.22 0.01 0.77 -0.08 -0.15 -0.02
n=84 0.35 -0.24 0.17 0.02 -0.20 0.85 -0.18 -0.02 0.01 0.01
n=96 0.21 -0.22 0.02 -0.51 0.76 0.05 0.08 -0.25 0.06 -0.04
n=108 0.25 -0.30 -0.54 0.52 0.31 -0.10 -0.40 0.15 -0.02 0.01
n=120 0.34 -0.36 0.67 0.39 0.02 -0.35 0.14 -0.10 0.01 0.00

λ 12.70 2.26 1.59 0.74 0.41 0.29 0.21 0.11 0.07 0.04

Table A.1: This Table shows the loadings of the 10 principal components of the 10 changes in forward

rates ∆f
(m)
t = f

(n)
t − f (n)t−12 and their corresponding eigenvalues λ. Times to maturity are n and the

period is 1971:08-2018:12.

No trend Trend
n DF p-value lags DF p-value lags

12 -1.77 0.395 11 -3.81 0.016 17
24 -1.35 0.605 11 -3.29 0.068 11
36 -1.23 0.659 0 -2.97 0.141 0
48 -1.02 0.746 5 -2.80 0.196 5
60 -0.97 0.765 5 -2.93 0.154 5
72 -1.00 0.755 14 -2.96 0.144 6
84 -0.92 0.781 15 -2.85 0.179 15
96 -1.15 0.695 1 -2.79 0.200 1
108 -1.36 0.601 3 -3.01 0.131 3
120 -0.95 0.772 15 -2.71 0.232 15

Table A.2: The results of an Augmented Dickey-Fuller Test for a unit root in the n month forward
rates in the period 1971:08-2018:12. The ADF test statistic is computed as ρ̂

se(ρ̂) , where ρ̂ is the estimate

of ρ and se(ρ̂) its standard error. The null hypothesis is the existence of a unit root.
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n DF p-value lags

12 -4.53 0.000 19
24 -4.23 0.001 16
36 -5.13 0.000 12
48 -5.32 0.000 12
60 -4.91 0.000 15
72 -5.19 0.000 15
84 -6.20 0.000 12
96 -3.88 0.002 13
108 -4.73 0.000 17
120 -5.80 0.000 16

Table A.3: The results of an Augmented Dickey-Fuller Test for a unit root in the first differences of the

forward rates ∆f
(n)
t in the period 1971:08-2018:12. The ADF test statistic is computed as ρ̂

se(ρ̂) , where ρ̂

is the estimate of ρ and se(ρ̂) its standard error. The null hypothesis is the existence of a unit root. The
tests are performed with intercept but without trend.

Full-sample bond risk premia regressions

Panel A: Using F Panel B: Using ∆F

n const PC1 PC2 PC3 R2 const PC1 PC2 PC3 R2

2 0.54∗∗∗ 0.04 0.22∗∗ 0.19 0.094 0.58∗∗∗ -0.03 0.38∗∗∗ 0.13 0.117

(2.69) (1.60) (2.19) (0.87) (2.96) (-0.40) (3.53) (1.05)

3 0.95∗∗∗ 0.05 0.48∗∗∗ 0.36 0.092 1.01∗∗∗ -0.04 0.70∗∗∗ 0.30 0.126

(2.60) (1.10) (2.67) (0.81) (2.82) (-0.31) (3.71) (1.43)

4 1.34∗∗∗ 0.06 0.79∗∗∗ 0.54 0.109 1.42∗∗∗ -0.04 0.97∗∗∗ 0.45 0.123

(2.67) (0.88) (3.17) (0.80) (2.82) (-0.22) (3.73) (1.46)

5 1.52∗∗ 0.05 1.07∗∗∗ 0.56 0.115 1.63∗∗ -0.03 1.16∗∗ 0.49 0.113

(2.49) (0.60) (3.50) (0.63) (2.59) (-0.12) (3.73) (1.33)

7 1.93∗∗ 0.06 1.73∗∗∗ 0.76 0.150 2.08∗∗ 0.03 1.57∗∗∗ 0.93 0.118

(2.36) (0.57) (4.17) (0.60) (2.38) (0.10) (3.79) (1.63)

10 2.22∗∗ 0.04 2.69∗∗∗ 0.71 0.179 2.46∗∗ 0.10 2.04∗∗∗ 1.30∗ 0.110

(2.03) (0.27) (4.84) (0.41) (2.02) (0.23) (3.75) (1.70)

Table A.4: This table reports output from the full-sample bond risk premia regressions. Panel A
shows results for the first three principal components of the forward rates (F ), panel B for the first three
principal components of the changes in forward rates (∆F ). In parentheses are t-statistics, which are
are obtained from Newey-West standard errors computed with 11 lags. The estimation is carried out on
monthly data from August 1971 through December 2018 using Liu and Wu (2021) bond yields. Three
(***), two (**) and one (*) asterisk(s) denote significance at the 1, 5 and 10 percent significance level,
respectively.
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Full-sample bond risk premia regressions – Including macro factors

Yield factors Macro factors

n const. PC 1 PC 2 PC 3 PC 2 PC 3 R2

Panel A: Using F as yield factors

2 0.61*** 0.04 0.21** 0.21 0.084

(2.93) (1.40) (2.00) (0.91)

3 1.06*** 0.06 0.35* 0.31 0.17*** 0.104

(2.89) (1.23) (1.86) (0.70) (2.89)

4 1.50*** 0.12* 0.26 0.19 0.35*** -0.36*** 0.159

(3.00) (1.71) (0.91) (0.28) (3.69) (-3.15)

5 1.71*** 0.12 0.41 0.11 0.44*** -0.45*** 0.168

(2.82) (1.49) (1.15) (0.12) (3.79) (-3.12)

7 2.17*** 0.16 0.89* 0.15 0.59*** -0.56*** 0.196

(2.65) (1.41) (1.77) (0.12) (3.88) (-3.03)

10 2.55** 0.14 1.76** 0.04 0.69*** -0.59** 0.207

(2.30) (0.91) (2.52) (0.02) (3.09) (-2.20)

Panel B: Using ∆F as yield factors

2 0.62*** -0.02 0.38*** 0.13 0.118

(3.09) (-0.31) (3.53) (1.07)

3 1.09*** -0.01 0.65*** 0.31 0.15** 0.147

(3.05) (-0.07) (3.33) (1.48) (2.15)

4 1.53*** 0.05 0.80*** 0.45 0.26** -0.25** 0.181

(3.12) (0.28) (2.85) (1.47) (2.82) (-2.52)

5 1.76*** 0.09 0.93*** 0.49 0.37*** -0.36*** 0.191

(2.93) (0.44) (2.71) (1.35) (3.22) (-2.85)

7 2.25*** 0.21 1.20*** 0.93 0.57*** -0.55*** 0.214

(2.74) (0.71) (2.67) (1.65) (3.80) (-3.25)

10 2.68** 0.36 1.51** 1.30* 0.84*** -0.78*** 0.214

(2.36) (0.83) (2.55) (1.71) (3.86) (-3.25)

Table A.5: This table reports output from the full-sample bond risk premia regressions including the
macro factors. Panel A shows results for the first three principal components of the forward rates (F ),
panel B for the first three principal components of the changes in forward rates (∆F ). In parentheses
are t-statistics, which are are obtained from Newey-West standard errors computed with 11 lags. The
estimation is carried out on monthly data from August 1971 through December 2018 using Liu and Wu
(2021) bond yields. Three (***), two (**) and one (*) asterisk(s) denote significance at the 1, 5 and 10
percent significance level, respectively.
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Out-of-sample R-squared – Including macro factors

n
Factors 2 3 4 5 7 10

Panel A: Using F as yield factors

F -0.319 -0.233 -0.167 -0.085 -0.056 0.034
F and Zf -0.185 -0.108 -0.090 -0.019 -0.061 -0.003
F and Zv -0.238 -0.189 -0.115 -0.037 -0.003 0.043

Panel B: Using ∆F as yield factors

∆F 0.199
(0.004)

∗∗∗ 0.197
(0.003)

∗∗∗ 0.180
(0.002)

∗∗∗ 0.157
(0.002)

∗∗∗ 0.139
(0.002)

∗∗∗ 0.125
(0.002)

∗∗∗

∆F and Zf 0.108
(0.008)

∗∗∗ 0.128
(0.006)

∗∗∗ 0.160
(0.001)

∗∗∗ 0.171
(0.000)

∗∗∗ 0.171
(0.000)

∗∗∗ 0.237
(0.000)

∗∗∗

∆F and Zv 0.190
(0.011)

∗∗∗ 0.175
(0.002)

∗∗∗ 0.208
(0.001)

∗∗∗ 0.225
(0.001)

∗∗∗ 0.232
(0.000)

∗∗∗ 0.270
(0.000)

∗∗∗

Table A.6: This table shows the out-of-sample R-squared when predicting out-of-sample one-year
excess bond returns with the first three principal components of forward rates (F ) or forward rate
changes (∆F ) alone and with adding significant (at the 1% level) macro factors. The macro factors are
either based on vintage data (Zv) or final data (Zf ). The p-values are provided in parentheses. Three
(***), two (**) and one (*) asterisk(s) denote significance at the 1, 5 and 10 percent significance level,
respectively. As vintage data are only available from August 1998 onward, lagged final data are used
before this period.

B Root Mean Squared Prediction Errors (RMSPE)

Root Mean Squared Prediction Errors of predictions using yields, yield changes, forwards rates

and forward rates changes are shown in Table A.7. Predictions using yields and forward rates

generally produce higher prediction errors than the benchmark, and predictions using changes in

yields/forward rates lead to lower predictions errors, indicating that the latter approach provides

the most accurate predictions.

RMSPE

n
Factors 2 3 4 5 7 10

Benchmark 1.30 2.50 3.52 4.44 6.11 8.34

Y 1.77 3.22 4.38 5.30 7.01 8.93
∆Y 1.18 2.23 3.14 4.00 5.55 7.71

Y and Zf 1.64 3.01 4.16 5.06 6.76 8.66
∆Y and Zf 1.26 2.38 3.27 4.01 5.58 7.32

Y and Zv 1.72 3.13 4.31 5.21 6.90 8.96
∆Y and Zv 1.21 2.29 3.18 3.98 5.39 7.17

Table A.7: This table shows the Root Mean Squared Prediction Error (RMSPE) when predicting
out-of-sample one-year excess bond returns for bonds with maturities (n) of 2 to 10 years with the first
three principal components of yields/forwards (Y ) or with the first three principal components of changes
in yields (∆Y ).
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C Results using strictly only vintage macro data

Vintage data is only available from August 1999 onwards. In our main analysis with vintage data,

we have used lagged revised data for the period 1990-1999. To confirm that this does not change

conclusions, we repeat the analysis using strictly only vintage macro data (from August 1999

onwards). Again, using factors based on changes in yields/forward rates outperforms factors

based on yield/forward rate levels, and generally produces positive and significant out-of-sample

R2s.

Out-of-sample R-squared – Including macro factors (1999:08-2018:12)

n
Factors 2 3 4 5 7 10

Y and Zv -1.003 -0.831 -0.799 -0.639 -0.496 -0.285
∆Y and Zv 0.089

(0.033)

∗∗ 0.130
(0.027)

∗∗∗ 0.145
(0.018)

∗∗∗ 0.177
(0.011)

∗∗∗ 0.196
(0.005)

∗∗∗ 0.281
(0.001)

∗∗∗

F and Zv -0.452 -0.376 -0.322 -0.203 -0.142 -0.002
∆F and Zv 0.202

(0.004)

∗∗∗ 0.178
(0.005)

∗∗∗ 0.208
(0.005)

∗∗∗ 0.245
(0.003)

∗∗∗ 0.238
(0.002)

∗∗∗ 0.309
(0.001)

∗∗∗

Table A.8: This table shows the out-of-sample R-squared when predicting out-of-sample one-year
excess bond returns with the first three principal components of yield levels (Y ), yield changes (∆Y ),
forward rates (F ) and forward rate changes (∆F ), in combination with vintage macro data (Zv). The
p-values are provided in parentheses. Three (***), two (**) and one (*) asterisk(s) denote significance at
the 1, 5 and 10 percent significance level, respectively. The out-of-sample period starts in August 1999,
the first period from which vintage data is available.

D Results using nonoverlapping bond returns

For robustness, we also consider an out-of-sample analysis using only strictly nonoverlapping

bond returns. I.e., for every year we only use the excess return of January. Also in this case, using

factors based on changes in yields/forward rates outperforms factors based on yield/forward rate

levels, and generally produces positive and significant out-of-sample R2s.
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Out-of-sample R-squared (non-overlapping returns)

n
Factors 2 3 4 5 7 10

Y -0.591 -0.400 -0.305 -0.210 -0.109 0.041
(0.163)

∗∗∗

∆Y 0.249
(0.000)

∗∗∗ 0.262
(0.000)

∗∗∗ 0.279
(0.000)

∗∗∗ 0.277
(0.000)

∗∗∗ 0.224
(0.000)

∗∗∗ 0.163
(0.000)

∗∗∗

F -0.418 -0.257 -0.156 -0.066 0.006
(0.024)

∗∗ 0.109
(0.008)

∗∗∗

∆F 0.283
(0.000)

∗∗∗ 0.275
(0.000)

∗∗∗ 0.283
(0.000)

∗∗∗ 0.276
(0.000)

∗∗∗ 0.238
(0.000)

∗∗∗ 0.196
(0.000)

∗∗∗

Table A.9: This table shows the out-of-sample R-squared when predicting out-of-sample one-year
excess bond returns for bonds with maturities (n) of 2 to 10 years with the first three principal components
of yields (Y ) or with the first three principal components of changes in yields (∆Y ). We consider only
nonoverlapping returns, i.e. excess returns solely from January. Three (***), two (**) and one (*)
asterisk(s) denote significance at the 1, 5 and 10 percent significance level, respectively.

E Computational details for the Neural Network

For neural networks, we have made use of the Keras20 package, which is built on TensorFlow21.

We have generally followed Bianchi et al. (2021b) in the neural network design, as tuning many

settings was beyond our computing power. For an in-depth discussion of neural network settings,

we refer to Bianchi et al. (2021b). We here simply state our approach for replication purposes.

The numerical optimization is done using Stochastic Gradient Descent, with the learning rate

set to 0.01 and Nesterov Momentum to 0.9. An Early Stopping procedure is used that stops

optimization if the validation loss does not improve for 20 consecutive periods. In this case, the

optimal weights are restored. Explanatory variables are scaled to be between -1 and 1. Kernel

weights are initialized with the normal distribution. To combat overfitting, we make use of four

techniques. Firstly, we fit each neural network 20 times, and take the average prediction of the

10 networks with the lowest validation errors.22 Secondly, each batch is standardized before it

is passed on to the final layer. Thirdly, after each layer, a fraction of the nodes is dropped out.

Finally, L1L2 Regularization is applied to kernel weights. Every 60 observations, the values of

the dropout fraction (0.1, 0.3 or 0.5) and L1L2 regularization parameter (0.001, 0.01, 0.1 or 1)

are chosen to minimize the validation loss.

20https://keras.io/
21https://www.tensorflow.org/
22Bianchi et al. (2021b) select 10 from 100 networks, but this is beyond our computing power. Regardless, our

research indicated that selecting 10 works out of 20 or out of 100 does not appear to have much impact on the
results.
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F Rolling window results

In our main analysis, we have used an expanding estimation window, starting with 209 in-sample

observations. For robustness, we repeat our analysis using a rolling window of 209 observations.

Again, using factors based on changes in yields/forward rates outperforms factors based on

yield/forward rate levels, and generally produces positive and significant out-of-sample R2s.

Out-of-sample R-squared – Including macro factors

n
Factors 2 3 4 5 7 10

Panel A: Using Y as yield factors

Y -0.483 -0.434 -0.384 -0.323 -0.291 -0.189
Y and Zf -0.445 -0.355 -0.321 -0.307 -0.242 -0.171
Y and Zv -0.397 -0.378 -0.387 -0.312 -0.277 -0.191

Panel B: Using ∆Y as yield factors

∆Y 0.157
(0.002)

∗∗∗ 0.191
(0.002)

∗∗∗ 0.186
(0.002)

∗∗∗ 0.182
(0.002)

∗∗∗ 0.167
(0.001)

∗∗∗ 0.169
(0.000)

∗∗∗

∆Y and Zf -0.227 -0.058 -0.008 0.034
(0.000)

∗∗∗ 0.154
(0.001)

∗∗∗ 0.189
(0.000)

∗∗∗

∆Y and Zv -0.074 0.035
(0.002)

∗∗∗ 0.066
(0.003)

∗∗∗ 0.147
(0.002)

∗∗∗ 0.148
(0.001)

∗∗∗ 0.170
(0.000)

∗∗∗

Panel C: Using F as yield factors

F -0.477 -0.509 -0.500 -0.463 -0.430 -0.359
F and Zf -0.367 -0.323 -0.343 -0.374 -0.388 -0.322
F and Zv -0.354 -0.393 -0.455 -0.457 -0.415 -0.356

Panel D: Using ∆F as yield factors

∆F 0.145
(0.003)

∗∗∗ 0.170
(0.002)

∗∗∗ 0.160
(0.001)

∗∗∗ 0.156
(0.001)

∗∗∗ 0.141
(0.000)

∗∗∗ 0.153
(0.000)

∗∗∗

∆F and Zf -0.159 -0.015 0.036
(0.000)

∗∗∗ 0.072
(0.000)

∗∗∗ 0.175
(0.000)

∗∗∗ 0.205
(0.000)

∗∗∗

∆F and Zv -0.011 0.076
(0.001)

∗∗∗ 0.093
(0.001)

∗∗∗ 0.168
(0.001)

∗∗∗ 0.160
(0.000)

∗∗∗ 0.180
(0.000)

∗∗∗

Table A.10: This table shows the out-of-sample R-squared when predicting out-of-sample one-year
excess bond returns with the first three principal components of yield/forward rate levels (Y /F ) or
yield/forward rate changes (∆Y /∆F ) alone and with adding significant (at the 1% level) macro factors.
The macro factors are either based on vintage data (Zv) or final data (Zf ). The p-values are provided in
parentheses. Three (***), two (**) and one (*) asterisk(s) denote significance at the 1, 5 and 10 percent
significance level, respectively. The rolling window consists of 209 periods.

G Different lookback & holding period

In this section, we vary the holding period and lookback period in our analysis. That is, we

predict excess returns of an n month bond over an m month bond for n = 24, 36, 48, 60, 84 or

120 and m = 1, 3, 6, 12, 24. These are computed as

xr
(n)
t:t+m = −

(
n−m

12

)(
y

(n−m)
t+m − y(n)

t

)
+
(
y

(n)
t − y(m)

t

)
, (13)
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where we now denote time in months. We also consider various lookback periods k for the yield

factors, denoted as

∆ky
(n)
t = y

(n)
t − y(n)

t−k, (14)

for k = 1, 3, 6, 12 and 24. The goal of this exercise is not to obtain equally strong results across

holding periods and lookback periods. The excess returns on a one month bond are more noisy

than the returns on a one year bond, making it harder to accurately fit and predict. When

using a smaller lookback period, we include less information in our model. Movements in the

yield curve arguably not only respond to developments of last month, but also of the months

before. Rather, we perform this analysis to confirm that the predictability of bond returns does

not entirely break down with alternative time horizons.

Results are shown in Tables A.11 and A.12. As expected, predictions for the one month

holding period are not very accurate. However, for holding period of 3 months and higher,

using changes in yields/forward rates clearly outperforms using yield/forward rate levels, with

out-of-sample R2s that are generally positive and significant.

Results are also less strong with a smaller lookback period. However, even with only a one

month lookback period, using changes in yield factors produces much better results than using

yield levels. For lookback periods of 6, 12 or 24 months, predictive performance remains strong.

Out-of-sample R-squared

n
Holding period Factors 2 3 4 5 7 10

Y -0.099 -0.085 -0.065 -0.057 -0.016 0.002
(0.042)

∗∗∗

Y and Zf -0.016 -0.046 -0.052 -0.048 0.054
(0.006)

∗∗∗ 0.037
(0.011)

∗∗

Y and Zv -0.159 -0.116 -0.091 -0.085 -0.067 -0.030
∆Y -0.037 -0.027 -0.027 -0.025 -0.013 -0.015
∆Y and Zf -0.135 -0.128 -0.153 -0.162 -0.007 -0.020

1 ∆Y and Zv -0.094 -0.049 -0.058 -0.051 -0.054 -0.064
F -0.053 -0.037 -0.022 -0.018 -0.006 0.004

(0.029)

∗∗

F and Zf -0.022 -0.055 -0.049 -0.026 0.052
(0.004)

∗∗∗ 0.028
(0.001)

∗∗∗

F and Zv -0.124 -0.082 -0.058 -0.055 -0.066 -0.033
∆F -0.021 -0.011 -0.012 -0.012 -0.007 -0.011
∆F and Zf -0.076 -0.104 -0.136 -0.123 0.017

(0.004)

∗∗∗ 0.006
(0.008)

∗∗∗

∆F and Zv -0.075 -0.035 -0.042 -0.045 -0.054 -0.061
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n
Holding period Factors 2 3 4 5 7 10

Y -0.280 -0.214 -0.149 -0.121 -0.070 -0.016
Y and Zf -0.151 -0.099 -0.054 -0.033 0.023 0.008
Y and Zv -0.155 -0.132 -0.099 -0.091 -0.055 -0.004
∆Y 0.021

(0.063)

∗ 0.018
(0.070)

∗ 0.008 0.002 0.002
(0.050)

∗ -0.008

∆Y and Zf -0.064 -0.011 -0.028 -0.007 0.007 -0.004
3 ∆Y and Zv -0.032 0.001 -0.001 -0.013 -0.020 -0.027

F -0.123 -0.085 -0.040 -0.026 -0.009 0.016
(0.018)

∗∗

F and Zf -0.056 -0.009 0.016 0.015 0.043 0.020
F and Zv -0.023 -0.016 -0.016 -0.012 -0.011 0.022
∆F 0.044

(0.004)

∗∗∗ 0.037
(0.010)

∗∗ 0.029
(0.023)

∗∗ 0.023
(0.036)

∗∗ 0.018
(0.001)

∗∗∗ 0.010

∆F and Zf -0.002 0.023
(0.001)

∗∗∗ 0.013
(0.002)

∗∗∗ 0.029
(0.002)

∗∗∗ 0.034
(0.003)

∗∗∗ 0.020
(0.001)

∗∗∗

∆F and Zv 0.015
(0.008)

∗∗∗ 0.030
(0.006)

∗∗∗ 0.021
(0.013)

∗∗ 0.006
(0.034)

∗∗ -0.006 -0.013

Y -0.488 -0.357 -0.250 -0.189 -0.106 -0.019
Y and Zf -0.222 -0.153 -0.131 -0.080 -0.039 0.035

(0.003)

∗∗∗

Y and Zv -0.258 -0.220 -0.156 -0.111 -0.058 -0.018
∆Y 0.108

(0.003)

∗∗∗ 0.089
(0.002)

∗∗∗ 0.063
(0.002)

∗∗∗ 0.047
(0.002)

∗∗∗ 0.039
(0.002)

∗∗∗ 0.022
(0.003)

∗∗∗

∆Y and Zf 0.005
(0.002)

∗∗∗ 0.030
(0.004)

∗∗∗ -0.003 0.000
(0.0017)

∗∗ 0.007
(0.015)

∗∗ 0.039
(0.006)

∗∗∗

6 ∆Y and Zv 0.061
(0.008)

∗∗∗ 0.059
(0.010)

∗∗ 0.031
(0.019)

∗∗ 0.011
(0.038)

∗∗ 0.005
(0.045)

∗∗ 0.024
(0.040)

∗∗

F -0.161 -0.102 -0.033 -0.003 0.021
(0.031)

∗∗ 0.058
(0.008)

∗∗∗

F and Zf -0.015 0.007
(0.003)

∗∗∗ 0.024
(0.004)

∗∗∗ 0.046
(0.003)

∗∗∗ 0.043
(0.004)

∗∗∗ 0.075
(0.001)

∗∗∗

F and Zv 0.009
(0.017)

∗∗ 0.006
(0.023)

∗∗ 0.031
(0.016)

∗∗ 0.046
(0.012)

∗∗ 0.046
(0.011)

∗∗ 0.041
(0.010)

∗∗

∆F 0.156
(0.000)

∗∗∗ 0.127
(0.001)

∗∗∗ 0.103
(0.002)

∗∗∗ 0.083
(0.005)

∗∗∗ 0.070
(0.011)

∗∗ 0.056
(0.021)

∗∗

∆F and Zf 0.088
(0.000)

∗∗∗ 0.099
(0.001)

∗∗∗ 0.071
(0.002)

∗∗∗ 0.066
(0.003)

∗∗∗ 0.064
(0.003)

∗∗∗ 0.084
(0.001)

∗∗∗

∆F and Zv 0.123
(0.001)

∗∗∗ 0.106
(0.002)

∗∗∗ 0.082
(0.005)

∗∗∗ 0.051
(0.014)

∗∗ 0.047
(0.015)

∗∗ 0.059
(0.015)

∗∗

Y -0.857 -0.656 -0.547 -0.422 -0.319 -0.148
Y and Zf -0.593 -0.444 -0.394 -0.297 -0.226 -0.079
Y and Zv -0.751 -0.568 -0.493 -0.378 -0.278 -0.155
∆Y 0.177

(0.004)

∗∗∗ 0.202
(0.003)

∗∗∗ 0.204
(0.002)

∗∗∗ 0.188
(0.002)

∗∗∗ 0.172
(0.002)

∗∗∗ 0.144
(0.002)

∗∗∗

∆Y and Zf 0.057
(0.008)

∗∗∗ 0.093
(0.006)

∗∗∗ 0.140
(0.001)

∗∗∗ 0.184
(0.000)

∗∗∗ 0.166
(0.000)

∗∗∗ 0.230
(0.000)

∗∗∗

12 ∆Y and Zv 0.127
(0.011)

∗∗∗ 0.161
(0.002)

∗∗∗ 0.186
(0.001)

∗∗∗ 0.197
(0.001)

∗∗∗ 0.220
(0.000)

∗∗∗ 0.260
(0.000)

∗∗∗

F -0.319 -0.233 -0.167 -0.085 -0.056 0.034
(0.014)

∗∗

F and Zf -0.185 -0.108 -0.090 -0.019 -0.061 -0.003
F and Zv -0.238 -0.189 -0.115 -0.037 -0.003 0.043
∆F 0.199

(0.004)

∗∗∗ 0.197
(0.003)

∗∗∗ 0.180
(0.002)

∗∗∗ 0.157
(0.002)

∗∗∗ 0.139
(0.002)

∗∗∗ 0.125
(0.002)

∗∗∗

∆F and Zf 0.108
(0.008)

∗∗∗ 0.128
(0.006)

∗∗∗ 0.160
(0.001)

∗∗∗ 0.171
(0.000)

∗∗∗ 0.171
(0.000)

∗∗∗ 0.237
(0.000)

∗∗∗

∆F and Zv 0.190
(0.011)

∗∗∗ 0.175
(0.002)

∗∗∗ 0.208
(0.001)

∗∗∗ 0.225
(0.001)

∗∗∗ 0.232
(0.000)

∗∗∗ 0.270
(0.000)

∗∗∗
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n
Holding period Factors 2 3 4 5 7 10

Y -1.391 -1.313 -1.214 -1.173 -0.871
Y and Zf -1.238 -1.204 -1.101 -1.064 -0.792
Y and Zv -1.234 -1.182 -1.085 -1.050 -0.784
∆Y 0.065

(0.002)

∗∗∗ 0.087
(0.001)

∗∗∗ 0.103
(0.001)

∗∗∗ 0.131
(0.000)

∗∗∗ 0.131
(0.000)

∗∗∗

∆Y and Zf 0.059
(0.002)

∗∗∗ 0.080
(0.001)

∗∗∗ 0.089
(0.001)

∗∗∗ 0.093
(0.001)

∗∗∗ 0.119
(0.000)

∗∗∗

24 ∆Y and Zv 0.035
(0.002)

∗∗∗ 0.064
(0.002)

∗∗∗ 0.085
(0.001)

∗∗∗ 0.103
(0.001)

∗∗∗ 0.084
(0.002)

∗∗∗

F -0.683 -0.599 -0.490 -0.483 -0.291
F and Zf -0.561 -0.490 -0.406 -0.419 -0.264
F and Zv -0.589 -0.525 -0.405 -0.405 -0.247
∆F 0.152

(0.005)

∗∗∗ 0.145
(0.007)

∗∗∗ 0.136
(0.009)

∗∗∗ 0.142
(0.005)

∗∗∗ 0.102
(0.012)

∗∗

∆F and Zf 0.122
(0.005)

∗∗∗ 0.134
(0.006)

∗∗∗ 0.128
(0.008)

∗∗∗ 0.097
(0.008)

∗∗∗ 0.090
(0.008)

∗∗∗

∆F and Zv 0.133
(0.005)

∗∗∗ 0.128
(0.009)

∗∗∗ 0.114
(0.012)

∗∗ 0.126
(0.006)

∗∗∗ 0.063
(0.021)

∗∗

Table A.11: This table shows the out-of-sample R-squared when predicting out-of-sample m-month
excess bond returns with the first three principal components of yield/forward rate levels (Y /F ) or
yield/forward rate changes (∆Y /∆F ) alone and with adding significant (at the 1% level) macro factors.
The macro factors are either based on vintage data (Zv) or final data (Zf ). The p-values are provided in
parentheses. Three (***), two (**) and one (*) asterisk(s) denote significance at the 1, 5 and 10 percent
significance level, respectively.

Out-of-sample R-squared

n
Lookback Factors 2 3 4 5 7 10

Using Y as yield factors
Y -0.857 -0.656 -0.547 -0.422 -0.319 -0.148
Y and Zf -0.593 -0.444 -0.394 -0.297 -0.226 -0.079
Y and Zv -0.751 -0.568 -0.493 -0.378 -0.278 -0.155

Using ∆Y as yield factors
∆Y -0.016 -0.012 -0.012 -0.013 -0.006 -0.012

1 ∆Y and Zf -0.031 -0.069 -0.048 -0.015 -0.030 0.043
(0.001)

∗∗

∆Y and Zv 0.058
(0.045)

∗∗ -0.062 -0.098 -0.048 0.012
(0.058)

∗ 0.060
(0.022)

∗∗

∆Y 0.015
(0.047)

∗∗ 0.015
(0.056)

∗ 0.010 0.004 0.007 -0.003

3 ∆Y and Zf -0.050 -0.073 -0.037 0.004
(0.005)

∗∗∗ -0.007 0.077
(0.001)

∗∗∗

∆Y and Zv 0.111
(0.023)

∗∗ -0.033 -0.071 -0.008 0.035
(0.043)

∗∗ 0.068
(0.018)

∗∗

∆Y 0.092
(0.007)

0.077
(0.012)

0.060
(0.023)

∗∗ 0.043
(0.044)

∗∗ 0.037
(0.066)

∗ 0.018

6 ∆Y and Zf 0.036
(0.007)

∗∗∗ -0.024 0.012
(0.011)

∗∗ 0.052
(0.004)

∗∗∗ 0.022
(0.002)

∗∗∗ 0.114
(0.001)

∗∗∗

∆Y and Zv 0.127
(0.014)

∗∗ -0.005 -0.001 0.046
(0.020)

∗∗ 0.078
(0.017)

∗ 0.065
(0.020)

∗∗
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n
Lookback Factors 2 3 4 5 7 10

∆Y 0.177
(0.004)

∗∗∗ 0.202
(0.003)

∗∗∗ 0.204
(0.002)

∗∗∗ 0.188
(0.002)

∗∗∗ 0.172
(0.002)

∗∗∗ 0.144
(0.002)

∗∗∗

12 ∆Y and Zf 0.057
(0.008)

∗∗∗ 0.093
(0.006)

∗∗∗ 0.140
(0.001)

∗∗∗ 0.184
(0.000)

∗∗∗ 0.166
(0.000)

∗∗∗ 0.230
(0.000)

∗∗∗

∆Y and Zv 0.127
(0.011)

∗∗∗ 0.161
(0.002)

∗∗∗ 0.186
(0.001)

∗∗∗ 0.197
(0.001)

∗∗∗ 0.220
(0.000)

∗∗∗ 0.260
(0.000)

∗∗∗

∆Y 0.027
(0.004)

∗∗∗ 0.100
(0.000)

∗∗∗ 0.145
(0.000)

∗∗∗ 0.150
(0.000)

∗∗∗ 0.167
(0.000)

∗∗∗ 0.153
(0.001)

∗∗∗

24 ∆Y and Zf 0.053
(0.002)

∗∗∗ 0.137
(0.000)

∗∗∗ 0.169
(0.000)

∗∗∗ 0.152
(0.000)

∗∗∗ 0.197
(0.000)

∗∗∗ 0.201
(0.000)

∗∗∗

∆Y and Zv 0.026
(0.004)

∗∗∗ 0.097
(0.000)

∗∗∗ 0.126
(0.000)

∗∗∗ 0.140
(0.001)

∗∗∗ 0.204
(0.000)

∗∗∗ 0.202
(0.001)

∗∗∗

Using F as yield factors
F -0.319 -0.233 -0.167 -0.085 -0.056 0.034

(0.014)

∗∗

F and Zf -0.185 -0.108 -0.090 -0.019 -0.061 -0.003
F and Zv -0.238 -0.189 -0.115 -0.037 -0.003 0.043

Using ∆F as yield factors
∆F -0.012 -0.010 -0.011 -0.010 -0.005 -0.010

1 ∆F and Zf -0.021 -0.064 -0.041 -0.002 -0.016 0.063
(0.001)

∗∗

∆F and Zv 0.054
(0.047)

∗ -0.055 -0.096 -0.045 0.012
(0.056)

∗ 0.062
(0.022)

∗∗

∆F 0.036
(0.006)

∗ 0.036
(0.010)

∗∗ 0.033
(0.017)

∗∗ 0.026
(0.032)

∗∗ 0.026
(0.043)

∗∗ 0.016

3 ∆F and Zf -0.025 -0.044 -0.015 0.026 0.018 0.105
∆F and Zv 0.135

(0.019)

∗∗ -0.007 -0.046 0.013
(0.042)

∗∗ 0.038
(0.030)

∗∗ 0.072
(0.012)

∗∗

∆F 0.114
(0.002)

∗∗∗ 0.101
(0.003)

∗∗∗ 0.089
(0.006)

∗∗∗ 0.072
(0.013)

∗ 0.067
(0.019)

∗∗ 0.054
(0.034)

∗∗

6 ∆F and Zf 0.080
(0.003)

∗∗∗ 0.019
(0.011)

∗∗ 0.043
(0.006)

∗∗∗ 0.087
(0.002)

∗∗∗ 0.068
(0.001)

∗∗∗ 0.163
(0.000)

∗∗∗

∆F and Zv 0.175
(0.006)

∗∗∗ 0.020
(0.041)

∗∗ 0.018
(0.022)

∗∗∗ 0.068
(0.010)

∗∗∗ 0.096
(0.009)

∗∗∗ 0 094
(0.008)

∗∗∗

∆F 0.199
(0.004)

∗∗∗ 0.197
(0.003)

∗∗∗ 0.180
(0.002)

∗∗∗ 0.157
(0.002)

∗∗∗ 0.139
(0.002)

∗∗∗ 0.125
(0.002)

∗∗∗

12 ∆F and Zf 0.108
(0.008)

∗∗∗ 0.128
(0.006)

∗∗∗ 0.160
(0.001)

∗∗∗ 0.171
(0.000)

∗∗∗ 0.171
(0.000)

∗∗∗ 0.237
(0.000)

∗∗∗

∆F and Zv 0.190
(0.011)

∗∗∗ 0.175
(0.002)

∗∗∗ 0.208
(0.001)

∗∗∗ 0.225
(0.001)

∗∗∗ 0.232
(0.000)

∗∗∗ 0.270
(0.000)

∗∗∗

∆F 0.144
(0.002)

∗∗∗ 0.146
(0.002)

∗∗∗ 0.125
(0.003)

∗∗∗ 0.111
(0.004)

∗∗∗ 0.073
(0.005)

∗∗∗ 0.029
(0.013)

∗∗

24 ∆F and Zf 0.040
(0.003)

∗∗∗ 0.044
(0.003)

∗∗∗ 0.077
(0.001)

∗∗∗ 0.117
(0.001)

∗∗∗ 0.062
(0.000)

∗∗∗ 0.053
(0.000)

∗∗∗

∆F and Zv 0.090
(0.009)

∗∗∗ 0.110
(0.002)

∗∗∗ 0.121
(0.001)

∗∗∗ 0.141
(0.001)

∗∗∗ 0.184
(0.000)

∗∗∗ 0.151
(0.001)

∗∗∗

Table A.12: This table shows the out-of-sample R-squared when predicting out-of-sample one-year
excess bond returns with the first three principal components of yield/forward rate levels (Y /F ) or k
month changes in yields/forward rates (∆kY /∆kF ) alone and with adding significant (at the 1% level)
macro factors. The macro factors are either based on vintage data (Zv) or final data (Zf ). The p-values
are provided in parentheses. Three (***), two (**) and one (*) asterisk(s) denote significance at the 1, 5
and 10 percent significance level, respectively.
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H Principal component loadings of macro factors

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
Production
Real Personal Income 0.063 0.069 0.016 0.046 0.035 0.026 -0.070 -0.071
Real personal income ex transfer receipts 0.085 0.082 0.020 0.042 0.037 -0.004 -0.078 -0.066
Real personal consumption expenditures 0.067 0.042 -0.034 0.066 0.003 0.174 -0.026 0.106
Real Manu. and Trade Industries Sales 0.119 0.058 -0.060 0.038 0.077 0.152 -0.012 -0.014
Retail and Food Services Sales 0.069 -0.044 -0.050 0.041 0.057 0.170 -0.055 0.066
IP Index 0.180 0.077 -0.062 -0.025 0.120 0.062 0.130 0.004
IP: Final Products and Nonindustrial Supplies 0.173 0.060 -0.061 -0.007 0.133 0.090 0.152 0.023
IP: Final Products (Market Group) 0.157 0.064 -0.056 -0.009 0.145 0.095 0.175 0.027
IP: Consumer Goods 0.125 0.066 -0.080 -0.012 0.116 0.125 0.215 0.073
IP: Durable Consumer Goods 0.119 0.081 -0.078 -0.018 0.104 0.098 0.138 -0.064
IP: Nondurable Consumer Goods 0.076 0.022 -0.044 -0.003 0.084 0.095 0.191 0.167
IP: Business Equipment 0.153 0.049 -0.016 0.003 0.132 0.021 0.064 -0.051
IP: Materials 0.158 0.080 -0.054 -0.036 0.089 0.029 0.089 -0.015
IP: Durable Materials 0.172 0.054 -0.067 -0.014 0.086 0.016 0.056 -0.073
IP: Nondurable Materials 0.113 0.047 -0.047 -0.032 0.046 0.060 0.080 0.002
IP: Manufacturing (SIC) 0.185 0.064 -0.068 -0.011 0.115 0.062 0.112 -0.036
IP: Residential Utilities 0.000 0.005 -0.014 -0.032 0.003 0.059 0.093 0.162
IP: Fuels 0.021 0.017 -0.001 -0.006 0.022 0.003 0.095 -0.008
ISM Manufacturing: Production Index 0.172 0.081 -0.098 -0.020 0.113 0.056 0.118 -0.052
Capacity Utilization: Manufacturing 0.072 0.007 -0.067 0.015 -0.008 -0.024 -0.045 -0.042
Labor market
Help-Wanted Index for United States 0.105 0.032 -0.084 0.021 -0.016 -0.042 -0.055 -0.028
Ratio of Help Wanted/No. Unemployed 0.042 -0.040 0.049 0.028 -0.014 0.008 -0.010 -0.094
Civilian Labor Force 0.130 -0.012 0.007 0.027 -0.007 -0.063 -0.050 -0.070
Civilian Employment -0.131 -0.032 0.054 0.000 -0.005 0.097 0.064 -0.024
Civilian Unemployment Rate -0.041 0.019 -0.047 -0.037 0.019 0.145 0.045 -0.151
Average Duration of Unemployment (Weeks) -0.022 -0.017 0.043 0.023 0.032 -0.041 0.000 0.025
Civilians Unemployed - Less Than 5 Weeks -0.065 -0.016 0.047 -0.007 -0.024 0.013 0.033 0.034
Civilians Unemployed for 5–14 Weeks -0.115 -0.019 0.013 -0.052 -0.031 0.190 0.082 -0.099
Civilians Unemployed - 15 Weeks & Over -0.075 -0.011 0.036 -0.038 -0.048 0.097 0.029 -0.041
Civilians Unemployed for 15–26 Weeks -0.092 -0.024 -0.020 -0.036 0.000 0.173 0.090 -0.097
Civilians Unemployed for 27 Weeks and Over -0.087 -0.066 0.078 0.006 -0.015 -0.091 0.032 0.078
Initial Claims 0.190 -0.009 0.016 0.042 0.034 -0.105 -0.077 0.046
All Employees: Total nonfarm 0.190 0.022 -0.005 0.018 0.051 -0.142 -0.087 0.015
All Employees: Goods-Producing Industries 0.040 -0.018 0.059 -0.066 0.106 -0.061 -0.057 -0.023
All Employees: Mining and Logging: Mining 0.145 0.016 -0.001 0.081 -0.011 -0.083 -0.050 0.015
All Employees: Construction 0.183 0.030 -0.015 -0.015 0.069 -0.147 -0.077 0.011
All Employees: Manufacturing 0.181 0.030 -0.006 -0.021 0.058 -0.144 -0.073 -0.011
All Employees: Durable goods 0.143 0.024 -0.035 0.006 0.082 -0.123 -0.068 0.069
All Employees: Nondurable goods 0.157 -0.039 0.047 0.055 0.025 -0.062 -0.070 0.063
All Employees: Service-Providing Industries 0.168 -0.032 0.017 0.031 0.027 -0.103 -0.103 0.028
All Employees: Trade, Transportation & Utilities 0.161 -0.051 0.050 0.011 0.028 -0.121 -0.113 0.010
All Employees: Wholesale Trade 0.143 -0.027 0.010 0.041 0.012 -0.065 -0.060 0.025
All Employees: Retail Trade 0.123 -0.054 0.098 0.062 -0.019 -0.011 -0.047 0.069
All Employees: Financial Activities 0.020 -0.028 0.072 0.036 -0.037 0.027 0.059 0.073
All Employees: Government 0.064 0.063 -0.065 -0.004 0.040 -0.206 -0.135 0.090
Avg Weekly Hours: Goods-Producing 0.069 0.029 -0.066 -0.034 0.027 0.077 0.020 -0.056
Avg Weekly Overtime Hours: Manufacturing 0.065 0.063 -0.069 -0.006 0.024 -0.209 -0.130 0.074
Avg Weekly Hours: Manufacturing 0.138 -0.086 0.150 0.120 -0.171 0.071 0.072 0.010
ISM Manufacturing: Employment Index 0.110 -0.085 0.148 0.117 -0.123 0.067 0.067 -0.007
Housing
Housing Starts: Total New Privately Owned 0.120 -0.071 0.136 0.102 -0.150 0.078 0.083 -0.024
Housing Starts, Northeast 0.132 -0.076 0.138 0.107 -0.161 0.062 0.058 0.024
Housing Starts, Midwest 0.134 -0.087 0.135 0.121 -0.177 0.058 0.063 0.017
Housing Starts, South 0.139 -0.078 0.124 0.122 -0.193 0.057 0.061 0.023
Housing Starts, West 0.121 -0.084 0.132 0.119 -0.156 0.058 0.064 0.002
New Private Housing Permits (SAAR) 0.128 -0.066 0.108 0.116 -0.180 0.059 0.076 -0.012
New Private Housing Permits, Northeast (SAAR) 0.120 -0.060 0.093 0.099 -0.172 0.038 0.036 0.040
New Private Housing Permits, Midwest (SAAR) 0.136 -0.083 0.134 0.118 -0.183 0.061 0.060 0.025
New Private Housing Permits, South (SAAR) 0.090 -0.136 -0.041 -0.181 0.065 0.135 -0.035 -0.138
New Private Housing Permits, West (SAAR) 0.078 0.016 -0.034 0.005 0.080 0.092 -0.018 -0.104
Orders & inventories
ISM: PMI Composite Index 0.043 0.004 -0.006 0.008 0.066 0.057 -0.015 -0.062
ISM: New Orders Index 0.099 -0.073 0.103 -0.027 0.062 -0.064 -0.078 -0.055
ISM: Supplier Deliveries Index 0.073 -0.078 0.133 -0.050 0.092 -0.143 -0.100 -0.066
ISM: Inventories Index -0.091 0.015 0.120 -0.028 -0.067 -0.206 -0.025 0.026
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New Orders for Consumer Goods -0.024 -0.001 0.010 0.075 0.005 -0.042 0.032 -0.031
New Orders for Durable Goods -0.014 0.005 0.006 0.088 0.043 -0.117 0.081 -0.080
New Orders for Nondefense Capital Goods -0.022 0.122 -0.031 0.097 -0.081 -0.036 0.085 0.046
Unfilled Orders for Durable Goods -0.006 0.037 0.017 0.004 0.005 -0.069 0.088 0.015
Total Business Inventories 0.005 0.067 0.054 -0.005 -0.010 -0.038 0.095 -0.021
Total Business: Inventories to Sales Ratio -0.009 0.044 0.039 0.018 -0.007 -0.047 0.109 -0.004
Money & credit
M1 Money Stock 0.024 -0.008 -0.030 -0.042 -0.038 -0.013 0.042 -0.054
M2 Money Stock 0.002 0.037 -0.002 -0.004 -0.016 -0.026 0.083 0.008
Real M2 Money Stock 0.010 -0.019 -0.030 -0.006 -0.019 0.004 0.020 0.076
St. Louis Adjusted Monetary Base 0.012 -0.015 -0.034 0.004 -0.098 -0.097 0.021 0.151
Total Reserves of Depository Institutions 0.010 -0.016 -0.086 0.133 0.035 0.216 -0.311 0.062
Reserves Of Depository Institutions 0.010 -0.018 -0.089 0.126 0.031 0.217 -0.310 0.053
Commercial and Industrial Loans 0.008 -0.004 0.091 -0.158 -0.026 -0.230 0.249 -0.049
Real Estate Loans at All Commercial Banks -0.036 0.002 -0.083 0.114 -0.014 0.256 -0.182 0.035
Total Nonrevolving Credit 0.101 -0.033 0.014 -0.165 -0.032 0.029 -0.075 -0.037
Nonrevolving consumer credit to Personal Income 0.100 -0.018 -0.002 -0.233 -0.116 0.030 -0.046 -0.067
S&P’s Common Stock Price Index: Composite 0.089 -0.027 -0.020 -0.231 -0.135 0.065 -0.096 -0.052
S&P’s Common Stock Price Index: Industrials 0.092 -0.026 -0.014 -0.263 -0.138 0.057 -0.080 -0.059
S&P’s Composite Common Stock: Dividend Yield 0.091 -0.021 -0.018 -0.271 -0.152 0.053 -0.078 -0.064
S&P’s Composite Common Stock: Price-Earnings Ratio 0.074 -0.030 -0.026 -0.265 -0.154 0.059 -0.070 -0.053
Effective Federal Funds Rate 0.063 -0.028 -0.019 -0.254 -0.148 0.051 -0.052 -0.071
3-Month AA Financial Commercial Paper Rate 0.058 -0.021 0.011 -0.264 -0.121 0.009 0.004 -0.082
3-Month Treasury Bill 0.039 -0.003 0.065 -0.254 -0.095 -0.040 0.048 -0.051
6-Month Treasury Bill 0.005 0.122 -0.140 -0.022 -0.210 -0.080 0.050 -0.011
1-Year Treasury Rate 0.035 0.133 -0.202 0.043 -0.206 -0.064 -0.028 -0.008
5-Year Treasury Rate 0.040 0.136 -0.198 0.054 -0.225 -0.068 -0.009 -0.013
10-Year Treasury Rate 0.052 0.124 -0.177 0.055 -0.233 -0.038 0.007 -0.008
Moody’s Seasoned Aaa Corporate Bond Yield 0.021 0.142 -0.206 0.088 -0.194 -0.030 0.038 -0.023
Moody’s Seasoned Baa Corporate Bond Yield 0.007 0.150 -0.219 0.079 -0.169 -0.045 0.028 -0.035
3-Month Commercial Paper Minus FEDFUNDS -0.018 0.154 -0.224 0.074 -0.155 -0.054 0.038 -0.029
3-Month Treasury C Minus FEDFUNDS -0.041 0.152 -0.221 0.072 -0.144 -0.026 0.053 -0.030
6-Month Treasury C Minus FEDFUNDS 0.006 0.066 0.028 -0.158 -0.017 0.017 0.035 0.411
1-Year Treasury C Minus FEDFUNDS 0.014 0.041 0.001 -0.139 -0.029 0.065 -0.023 0.374
5-Year Treasury C Minus FEDFUNDS 0.004 0.010 0.012 -0.123 -0.014 0.057 -0.061 0.306
10-Year Treasury C Minus FEDFUNDS 0.007 -0.052 -0.012 0.105 0.007 -0.020 -0.048 -0.349
Moody’s Aaa Corporate Bond Minus FEDFUNDS 0.007 0.081 0.048 -0.090 -0.022 -0.075 0.144 0.157
Moody’s Baa Corporate Bond Minus FEDFUNDS -0.002 -0.200 -0.129 0.017 -0.008 -0.040 0.024 0.046
Trade Weighted U.S. Dollar Index: Major Currencies -0.003 -0.203 -0.133 0.018 -0.010 -0.039 0.025 0.049
Switzerland/U.S. Foreign Exchange Rate 0.008 -0.190 -0.138 0.031 0.014 -0.019 0.003 0.003
Japan/U.S. Foreign Exchange Rate -0.008 -0.142 -0.094 0.024 -0.002 -0.025 0.049 0.027
U.S./U.K. Foreign Exchange Rate -0.004 -0.106 -0.069 0.007 -0.016 -0.014 -0.003 0.031
Canada/U.S. Foreign Exchange Rate 0.001 -0.039 -0.041 0.037 0.002 0.017 -0.033 -0.090
Prices
PPI: Finished Goods 0.010 -0.239 -0.161 -0.003 0.008 -0.055 0.066 0.028
PPI: Finished Consumer Goods 0.012 -0.029 -0.035 -0.010 0.007 0.033 0.005 0.047
PPI: Intermediate Materials 0.001 -0.223 -0.154 0.014 0.001 -0.025 0.038 0.012
PPI: Crude Materials 0.007 0.009 0.011 0.011 0.032 0.002 -0.016 0.007
Crude Oil, spliced WTI and Cushing 0.002 -0.245 -0.165 0.007 -0.003 -0.042 0.057 0.039
PPI: Metals and metal products: 0.001 -0.051 -0.034 -0.025 -0.008 0.017 0.016 0.043
ISM Manufacturing: Prices Index 0.022 -0.063 -0.042 -0.024 0.028 0.008 0.009 -0.039
CPI: All Items 0.012 -0.224 -0.154 -0.001 0.013 -0.040 0.054 0.022
CPI: Apparel 0.005 -0.243 -0.166 0.000 -0.002 -0.044 0.063 0.030
CPI: Transportation 0.012 -0.239 -0.162 -0.005 0.011 -0.052 0.070 0.021
CPI: Medical Care 0.008 -0.223 -0.154 0.006 0.005 -0.022 0.042 0.025
CPI: Commodities 0.007 -0.048 -0.033 -0.002 0.007 0.015 -0.005 0.023
CPI: Durables 0.004 -0.240 -0.164 0.009 -0.002 -0.043 0.059 0.035
CPI: Services 0.008 -0.059 -0.041 0.001 0.020 -0.018 -0.013 -0.048
CPI: All Items Less Food -0.003 -0.003 0.004 0.024 -0.016 -0.050 -0.044 -0.150
CPI: All items less shelter -0.022 -0.013 0.015 0.014 -0.046 -0.053 -0.051 -0.059
CPI: All items less medical care 0.007 0.005 -0.006 -0.002 -0.012 -0.034 -0.015 -0.151
Consumption
Personal Cons. Expend.: Chain Index -0.003 0.031 -0.056 0.015 -0.072 0.123 -0.188 0.103
Personal Cons. Exp: Durable goods -0.030 0.005 0.015 0.132 0.067 -0.127 0.058 -0.057
Personal Cons. Exp: Nondurable goods 0.003 0.000 0.007 -0.021 -0.017 0.016 -0.001 0.067
Personal Cons. Exp: Services 0.006 0.004 0.003 -0.015 -0.013 0.008 -0.003 0.068
Avg Hourly Earnings: Goods-Producing -0.004 -0.021 -0.024 0.004 0.011 0.024 0.033 -0.048
Avg Hourly Earnings: Construction -0.091 0.012 0.040 -0.038 -0.004 0.007 0.226 -0.049

Table A.13: The factor loadings of the 128 macro variables on the first 8 components. The sample
period is 1971:08-2018:12. Variable descriptions are taken from McCracken and Ng (2016).
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